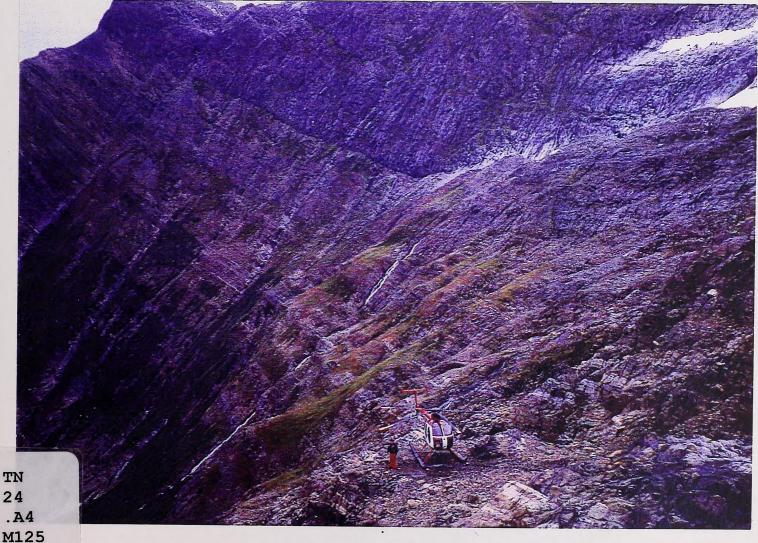


artment of the Interior


BLM-Alaska Open File Report 72 BLM/AK/ST-98/018+3091+930 August 1998

Alaska State Office 222 West 7th, #13 Anchorage, Alaska 99513

Mineral Investigations in the Stikine Area, Southeast Alaska, 1997

Mitchell E. McDonald, Jr. Jan C. Still Peter E. Bittenbender and James R. Coldwell

BLM LIBRARY BLDG 50, ST-150A DENVER FEDERAL CENTER P.O. BOX 25047 DENVER, COLORADO 80225

ID 88068353

TN 24 . A4 M125 1998

Mineral Investigations in the Stikine Area, Southeast Alaska, 1997

Mitchell E. McDonald, Jr. Jan C. Still Peter E. Bittenbender and James R. Coldwell

Northern-Silver prospect, and al Malam Glecier, Southarst Alaska, shaving conternath Blins Rarge megalinearment in background. (Photo by Mitchell E. McDonald, Jr.)

Open File Reports

is able of the second land of the

Opera i de Reports identify the realits of inventories or other towestigations that are made available to the public maride the formal ALM. Make or minutal, shiftenton errors distant reports can include preliminary or incomplete data and are not published and distributed in quantify. Copies of this from only be obtained from the functur Minerols Information Center at 100 Savikite Rd., Mayflower Island. Dougles, class a 9924, by celling (907) 164-1553 or being (907) 364-1574. Refare publications and Middle to the Internet at http://www.internet.com/ being (907) 364-1574.

fromes are also available for inspection at the Alasky from the former of home and hit matters and the constant cructed in Anchorage, and various film need of the University of Alasky and Federal and rate provides in Alaska, and the USDFM literin (1997, 255 Chrone in Alasky and Federal and an Ba

> Open File Report 72 August 1998

Bureau of Land Management Alaska State Office Anchorage, Alaska 99513

Authors

Mitchell E. McDonald and Peter E. Bittenbender are geologists in the Division of Lands, Minerals and Resources, Juneau Mineral Information Center, Bureau of Land Management, Juneau, Alaska.

Jan C. Still and James R. Coldwell are mining engineers in the Division of Lands, Minerals and Resources, Juneau Mineral Information Center, Bureau of Land Management, Juneau, Alaska.

Cover Photo

Northern Silver prospect, north of Nelson Glacier, Southeast Alaska, showing contact with Coast Range megalineament in background. (Photo by Mitchell E. McDonald, Jr.)

Open File Reports

Open File Reports identify the results of inventories or other investigations that are made available to the public outside the formal BLM-Alaska technical publication series. These reports can include preliminary or incomplete data and are not published and distributed in quantity. Copies of this report may be obtained from the Juneau Minerals Information Center at 100 Savikko Rd., Mayflower Island, Douglas, Alaska, 99824, by calling (907) 364-1553 or faxing (907) 364-1574. Relate publications are listed on the Internet at http://juneau.ak.blm.gov.

Copies are also available for inspection at the Alaska Resources Library and Information Services in Anchorage, and various libraries of the University of Alaska, and Federal and state agencies in Alaska, and the USDI Natural Resource Library in Washington, D.C. and at the BLM Service Center Library in Denver.

MINERAL INVESTIGATIONS IN THE STIKINE AREA, SOUTHEAST ALASKA, 1997

CONTENTS

Abstract	1
Introduction	3
Location and access	3
Bureau work	4
Significant results	4
Future work	10
Sampling and analytical procedures	11
Sampling methods	11
Analytical methods	11
Minimum detection limits by analytical technique	12
Analytical results of mines, prospects and occurrences	13
Units	13
Sample description abbreviations	13
References	15

TABLES

FIGURES

1.	Location map of the Stikine study area	5
2.	1997 joint BLM-Wrangell-ADGGS geophysical survey area	7
3.	1996-1997 sample location map of the Stikine study area pock	et

ABBREVIATIONS

ADGGS	Alaska Division of Geological and Geophysical Surveys
ANILCA	Alaska National Interest Lands Conservation Act
BLM	U.S. Bureau of Land Management
USDA	U.S. Department of Agriculture
VMS	volcanogenic massive sulfide

UNIT OF MEASURE ABBREVIATIONS USED IN THIS REPORT

g/mt	gram per metric ton
ppb	parts per billion
ppm	parts per million
st	short ton
tr oz	troy ounce

CONVERSIONS

From	<u>Multiply by</u>	<u>To</u>
g/mt (= ppm) tr oz/st ppm ppb	0.02917 34.286 1,000 0.001	tr oz/st ppm ppb ppm

Mineral Investigations in the Stikine Area, Southeast Alaska, 1997 By Mitchell E. McDonald, Jr.¹, Jan C. Still², Peter E. Bittenbender¹ and James R. Coldwell²

ABSTRACT

The Bureau of Land Management (BLM) began a three-year mineral assessment of the Stikine area of Southeast Alaska in 1997. The study area includes several known areas of mineralization including the Cornwallis Peninsula, Duncan Canal, Woewodski Island, Zarembo Island, and Groundhog Basin. Duncan Canal, Woewodski Island, and Groundhog Basin were the focus of the 1997 field effort. Bureau geologists and engineers visited a total of 48 mines and prospects and took 311 rock chip and stream sediment samples. This report provides results from samples taken in the 1996-97 field seasons.

The Duncan Canal area, Woewodski Island, and Zarembo Island contain several occurrences of volcanogenic massive sulfide (VMS) mineralization hosted in Triassic rocks of the Alexander Terrane. The Alexander Terrane extends along the length of Southeast Alaska, and includes the Triassic age high-grade Greens Creek silver-lead-zinc-gold VMS deposit on northern Admiralty Island. Site specific examinations during this study coupled with newly created geophysical data and 1:63,360 scale geologic maps will help to more completely describe this VMS-style mineralization.

The Groundhog Basin area contains a variety of deposit types, most importantly replacement-style mineralization and polymetallic veins. Several known occurrences were visited that had previously not been reported. Samples taken in 1997 indicate sufficient silver, lead and zinc mineralization to conduct further work in this area.

¹ Geologist, Juneau Minerals Resources Team, U.S. Bureau of Land Management, Juneau, Alaska.

² Mining Engineer, Juneau Minerals Resources Team, U.S. Bureau of Land Management, Juneau, Alaska.

Dy Mitchell E. Mallouald, Jr. Jan C. Still, 20 and 20 Mitchell and 20 Mitchell E. Malana and Anti-

1.1.1.1.5

The Surface of Ababs in 1997. The study are molected with a second discourse of the second discourse of the second discourse of the study are molected as a molected as

The Darces Create and Vierwoold Liebes and the second seco

The promotion basis optimized a second of the off spectra and an extra the spectra of the spectrum starts of the spectrum starts and side of the spectrum starts and spect

house the ter

a i pin ogo i a di pina

Contracted Justican Minerals Resources Trans, U.S. Physics of Lard Mineral Strength

¹ Musique 20 guite et l'antera Musicale Societteres Tearry 13 51 Participant Community, and Musical Statement.

INTRODUCTION

During 1997, the Bureau of Land Management (BLM) began a three-year field investigation of the Stikine study area (Fig.1). This study was undertaken at the request of the U. S. Department of Agriculture (USDA), Forest Service for the purpose of conducting a mineral assessment of the Stikine area and is authorized under Section 1010 of the Alaska National Interest Lands Conservation Act (ANILCA). The objectives are to determine the type, amount and distribution of mineral deposits and to determine resource estimates when possible. These objectives will be met by locating, sampling, surveying, and mapping historic mines, prospects, and occurrences, as well as newly discovered mineralization and conducting reconnaissance investigations of prospective mineralized areas.

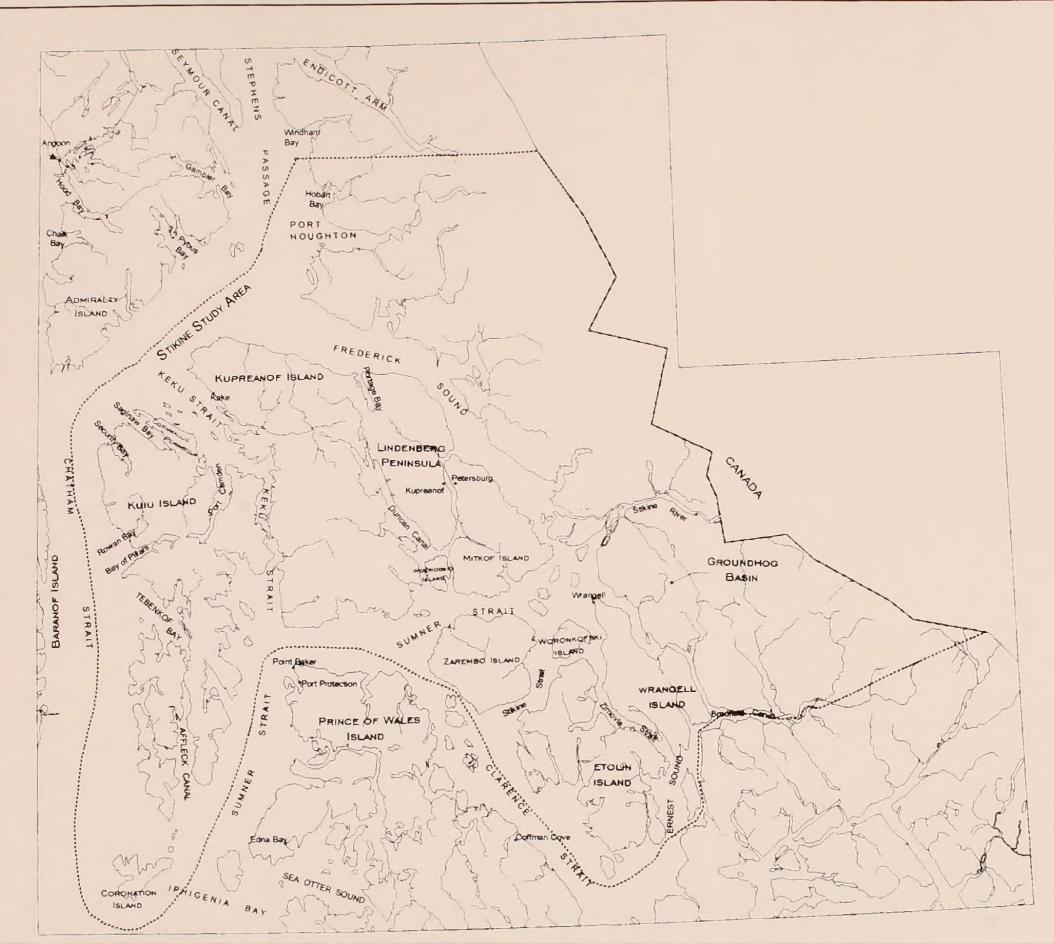
In 1997, the BLM participated in a joint project with the Alaska Division of Geological and Geophysical Surveys (ADGGS) and the City of Wrangell, to conduct an airborne geophysical survey of several areas within the Stikine study area (Fig.2). The targets of the geophysical survey were massive sulfide deposits in Duncan Canal, Woewodski Island, Zarembo Island, and Etolin Island; replacement deposits in Groundhog Basin; and rare earth deposits in Salmon Bay. These results were released in 1997 by the ADGGS as a separate report (ADGGS and others, 1997) and are therefore not discussed in this report.

The study area includes known areas of mineralization including the Cornwallis Peninsula, Duncan Canal, Woewodski Island, Zarembo Island, and Groundhog Basin. Duncan Canal, Woewodski Island, and Groundhog Basin were the focus of the 1997 field effort. Bureau personnel visited a total of 48 mines and prospects and collected 311 rock chip and stream sediment samples. This report provides the sample results from the 1997 field work and reconnaissance samples taken in 1996 prior to the start of the Stikine mineral investigation.

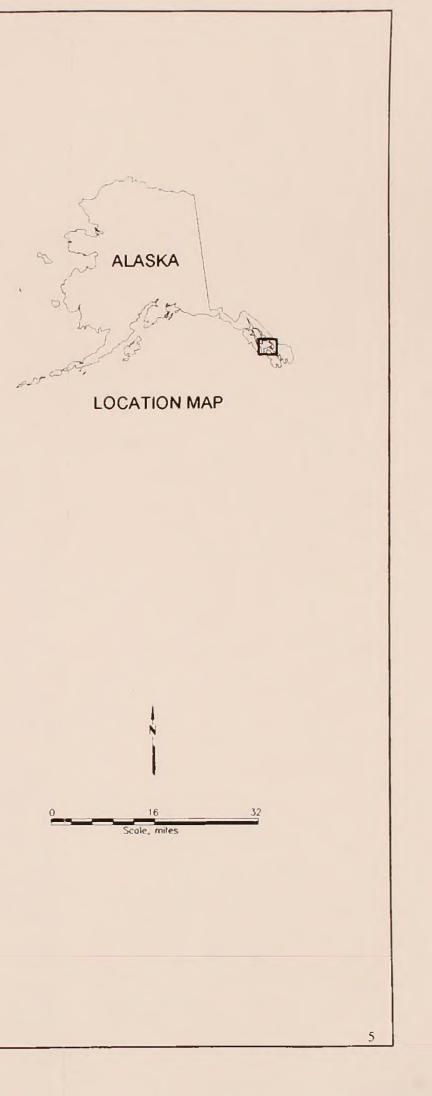
Location and Access

The study area includes Kuiu, Coronation, Kupreanof, Woewodski, Zarembo, Mitkof, Etolin, and Wrangell Islands, as well as smaller islands west of the mainland (Fig. 1). The mainland extending north from the Bradfield River to just south of Windham Bay and Endicott Arm is also included within the study area. Petersburg, Wrangell, and Kake are the largest communities in the study area.

Wrangell, located on the northern tip of Wrangell Island, is accessible by the Alaska Marine Highway ferry and commercial barging companies with regular service. A seaplane base and Stateowned paved airport allowing for scheduled jet and commuter services is available along with fixed wing, float plane, and helicopter charter services. Marine facilities include a deep draft dock, an Alaska Marine Highway ferry terminal, and two small boat harbors. Wrangell provides transportation and staging services for mining operations on the Iskut River in Canada. Wrangell's road network includes about 141 miles of state and Forest Service roads. Petersburg, located on the northeast tip of Mitkof Island, is accessible by the Alaska Marine Highway ferry and commercial barging companies with regular service. A seaplane base and Stateowned paved airport allowing for scheduled jet and commuter services is available along with fixed wing, float plane, and helicopter charter services. Other facilities include three docks, three boat harbors, two petroleum wharves, an Alaska Marine Highway terminal, and two barge terminals. Petersburg's road network includes about 214 miles of city, state and Forest Service roads.


Kake, located on northwest Kupreanof Island, is accessible by the Alaska Marine Highway ferry and commercial barging companies with regular service. A seaplane base and State-owned lighted and paved runway allows for scheduled commuter flights to Petersburg, Juneau, Sitka, and Wrangell. Other facilities include a small boat harbor, a deep water dock, and an Alaska Marine Highway ferry terminal. There are about 120 miles of logging roads in the Kake area, but no connections to other communities on Kupreanof Island.

BUREAU WORK


Bureau personnel made four field study trips into the Stikine study area in 1997. Twelve days were spent aboard a motor vessel visiting selected prospects and investigating beach exposures in the Duncan Canal area, Woewodski Island, and Zarembo Island. Two trips, totaling twenty days, were based out of Wrangell with contracted helicopter support. Selected prospects were visited in the Groundhog Basin and Duncan Canal areas during this time. Work was based out of Kake for five days to visit selected prospects in the Cornwallis Peninsula and Duncan Canal areas utilizing contracted helicopter support. A total of 48 mines and prospects were visited, and 311 samples were collected.

Significant Results

In the Duncan Canal area (Fig.3), significant results were obtained from volcanogenic massive sulfide (VMS) and replacement type deposits at the Northern Copper prospect, Taylor Creek, the Castle Island Barite Mine, the Castle River area, the Salt Chuck prospect, and magmatic segregation type deposits at the Portage Creek prospect. Samples at the Northern Copper prospect (map number 8) yielded copper values of 1.7 % in a select sample (sample 105) and zinc values of 1.2 % across 3 feet (sample 108). Samples at Taylor Creek (map number 20-21) yielded gold values of 0.903 parts per million (ppm) and 9.7 % lead in a grab sample (sample 226), and zinc values of 6.9 % across 0.7 feet (sample 53). A select sample (sample 109) at the Salt Chuck prospect (map number 16) yielded copper values of 7.1 %. A grab sample (sample 46) at the Castle Island Barite Mine (map number 26) yielded 0.347 ppm gold, 0.8 % lead, and 2.3 % zinc. Samples at beach exposures north of the Castle River (map number 24) yielded 0.5 % lead in a grab sample (sample 2622) and 3.0 % zinc across 0.5 feet (sample 47). Samples 139, 2368, and 2369 at the Portage Creek prospect (map number 13) yielded approximately 0.5 % copper across 15,12, and 15 feet respectively.

Base map adapted from USGS 1:250,000 scale Bradfield Canal. Craig. Ketchikan. Port Alexander. Petersburg, Sitka, and Sumdum quadrangles.

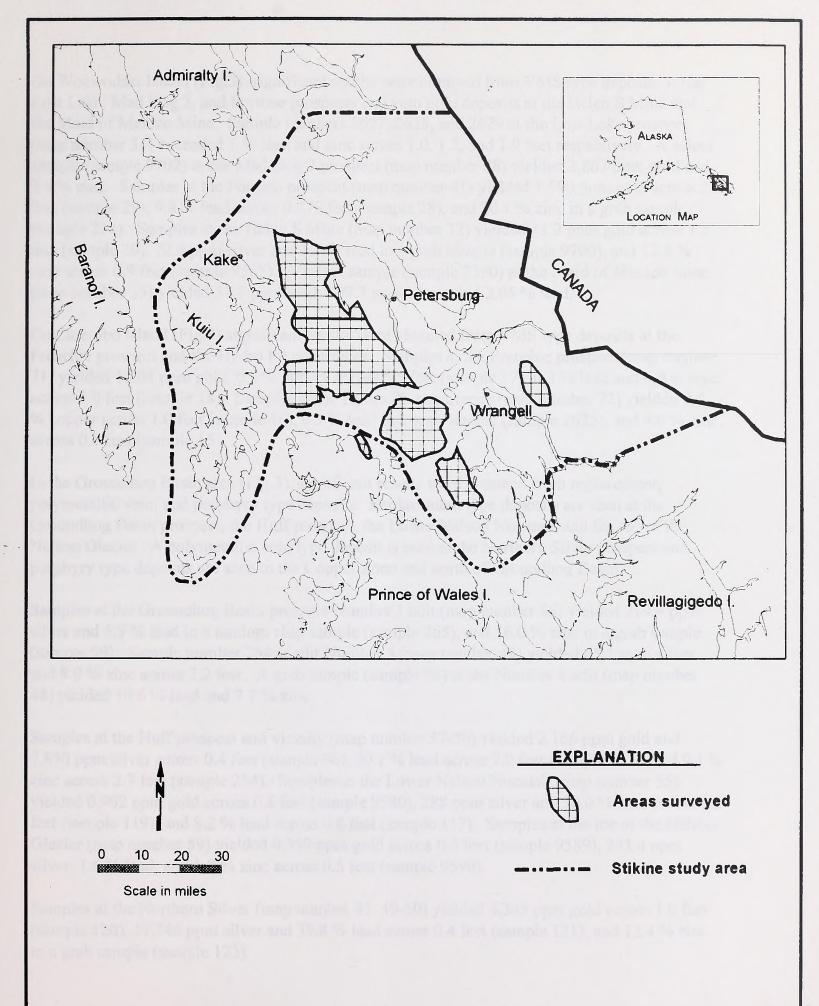


Figure 2. - 1997 joint BLM-Wrangell-ADGGS geophysical survey areas

On Woewodski Island (Fig.3), significant results were obtained from VMS type deposits at the Lost Lake, Mad Dog 2, and Fortune prospects and vein gold deposits at the Helen S Mine and the Maid of Mexico Mine. Sample numbers 2627, 2628, and 2629 at the Lost Lake prospect (map number 31) exceeded 1 % lead and zinc across 1.0, 1.2, and 1.9 feet respectively. A select sample (sample 9702) at the Mad Dog 2 prospect (map number 38) yielded 2.867 ppm gold and 2.9 % zinc. Samples at the Fortune prospect (map number 41) yielded 1.590 ppm gold across 2.0 feet (sample 29), 9.8 % lead across 0.075 feet (sample 28), and 20.1 % zinc in a grab sample (sample 211). Samples at the Helen S Mine (map number 32) yielded 11.2 ppm gold across 1.5 feet (sample 30), 72.9 ppm silver and 1.7 % lead in a grab sample (sample 9700), and 12.8 % zinc across 0.9 feet (sample 9565). A select sample (sample 2390) at the Maid of Mexico Mine (map number 35) yielded 37.7 ppm gold, 109.7 ppm silver, and 2.05 % lead.

On Zarembo Island (Fig.3) significant results were obtained from VMS type deposits at the Frenchie prospect and the Hydro Pit occurrence. Samples at the Frenchie prospect (map number 71) yielded 1.204 ppm gold, 0.5 % copper across 5.5 feet (sample 17), 0.3 % lead and 4.9 % zinc across 5.0 feet (sample 18). Samples at the Hydro Pit occurrence (map number 72) yielded 0.4 % copper across 1.0 feet (sample 16), 0.3 % lead in a grab sample (sample 2625), and 4.0 % zinc across 0.8 feet (sample 15).

In the Groundhog Basin area (Fig.3), significant results were obtained from replacement, polymetallic vein, and porphyry type deposits. Replacement type deposits are seen at the Groundhog Basin prospect, the Huff prospect, the Lower Nelson Nunatak, and the toe of the Nelson Glacier. A polymetallic vein type deposit is seen at the Northern Silver prospect and porphyry type deposits are seen in the Copper Zone and north of Groundhog Basin.

Samples at the Groundhog Basin prospect Number 1 adit (map number 46) yielded 219.4 ppm silver and 5.9 % lead in a random chip sample (sample 265), and 16.0 % zinc in a grab sample (sample 99). Sample number 264 at adit Number 3 (map number 48) yielded 65.1 ppm silver and 8.9 % zinc across 2.2 feet. A grab sample (sample 98) at the Number 4 adit (map number 48) yielded 10.6 % lead and 7.7 % zinc.

Samples at the Huff prospect and vicinity (map number 57-59) yielded 2.166 ppm gold and 7,830 ppm silver across 0.4 feet (sample 96), 20.1 % lead across 7.0 feet (sample 255), and 9.1 % zinc across 2.7 feet (sample 254). Samples at the Lower Nelson Nunatak (map number 55) yielded 0.902 ppm gold across 0.8 feet (sample 9580), 288 ppm silver and 30.0 % zinc across 0.5 feet (sample 119), and 8.2 % lead across 0.4 feet (sample 117). Samples at the toe of the Nelson Glacier (map number 59) yielded 0.359 ppm gold across 0.5 feet (sample 9589), 243.4 ppm silver, 1.6 % lead, and 1.9 % zinc across 0.5 feet (sample 9590).

Samples at the Northern Silver (map number 43, 49-50) yielded 4.345 ppm gold across 1.0 feet (sample 120), 17,746 ppm silver and 39.8 % lead across 0.4 feet (sample 121), and 12.4 % zinc in a grab sample (sample 123).

Samples at the Copper Zone (map number 52) yielded 4.58 ppm gold across 0.2 feet (sample 9596), 8.1 % copper in a select sample (sample 131), 675.4 ppm silver, 1.7 % lead, and 2.65 % zinc across 0.5 feet (sample 133). A grab sample (sample 144), north of Groundhog Basin (map number 44), contained 0.5 % molybdenum.

In the Cornwallis Peninsula area (Fig.3), significant results were obtained from replacement type deposits at the Kuiu Lead Zinc prospect and the Hungerford prospect. A select sample (sample 9578) at the Kuiu Lead Zinc prospect (map number 4) yielded 744 ppm silver, 20.5 % lead, and 13.4 % zinc. A grab sample (sample 9577) at the Hungerford prospect yielded 199 ppm silver, 2.8 % lead, and 2.2 % zinc.

Future Work

Additional field work in the Stikine study area is scheduled for 1998 and 1999. This work will consist of following up any significant results obtained in the 1997 field work, follow up of geophysical anomalies as defined in the 1997 airborne geophysical survey, and investigation of other prospects and occurrences not visited in 1997. An annual report of the 1998 field season is scheduled to be released in 1999 and a final report of the Stikine study area is scheduled for release in 2000.

In the provided set of photoes with the provided provided in the formation of the photoes of the p

SAMPLING AND ANALYTICAL PROCEDURES

Sampling Methods

Several types of rock samples were collected, including chip channel, continuous chip, representative chip, spaced chip, random chip, grab, and select samples to evaluate mineral deposits. Chip channel samples are chips of rock taken in a continuous line across a relatively uniform width and depth of an exposure. Continuous chip samples are chips of ore or rock taken in a continuous line across an exposure. Representative chip samples are discontinuous chips of rock taken across an exposure. Spaced chip samples are chips of rock taken at a specified interval across an exposure. Random chip samples are chips of rock taken randomly across an exposure. Grab samples are rock fragments taken more or less at random from an outcrop, float, or mine dump. Select samples are grab samples collected from the highest grade portion of a mineralized zone.

Stream sediment samples were taken as a reconnaissance measure to detect any anomalous metal values which may indicate mineralization in the area. **Stream sediment** samples are collections of silt and clay size particles taken from a stream bed.

Analytical Methods

Rock samples were dried, crushed, and pulverized to minus 100 mesh. A sample weight of 0.5 grams was put into solution using a nitric-aqua-regia leach technique and analyzed by atomic absorption spectrophotometry (AA) or inductively coupled argon plasma (ICP) analyses.

Samples were analyzed for gold by fire assay pre-concentration of a 30 gram sample followed by an AA finish with results reported in parts per billion. For gold values exceeding the upper detection limit of 10,000 ppb, a gravimetric finish was performed and results reported in ounces per ton . Silver, copper, lead, zinc, and molybdenum were analyzed by both AA and ICP techniques with results reported in parts per million. The result from the more accurate method is presented in the table. Those that exceeded the upper detection limits were subjected to low level assays with results reported in percent, with the exception of silver which was finished with a gravimetric method and results reported in ounces per ton. Platinum and palladium were analyzed by fire assay preconcentration of a 30 gram sample with an ICP finish and results reported in parts per billion. Mercury was analyzed by cold vapor and result reported in parts per billion. The remaining 26 elements were analyzed by ICP and results reported as either parts per million or percent. Any samples which exceeded the upper detection limits were not reanalyzed but were reported as greater than the corresponding upper detection limits.

MINIMUM DETECTION LIMITS BY ANALYTICAL TECHNIQUE

Fire assay

Element	Minimum, ppm	Finish Method
Au	0.005	atomic absorption (AA) (Chemex & Bondar Clegg)
Au	0.005 opt	gravimetric (Bondar Clegg)
Ag	0.02 opt	gravimetric (Bondar Clegg)
Pd	0.001	inductively coupled argon plasma(ICP) (Bondar Clegg)
Pt	0.005	inductively coupled argon plasma (ICP) (Bondar Clegg)

Atomic absorption spectrophotometry (AA)

Element	Min, ppm	Min, ppm	Element	Min, ppm	Min, ppm
	Chemex	Bondar Clegg		<u>Chemex</u>	Bondar Clegg
Ag	0.2	0.1	Co	1	1
Cu	1	1	Ni	1	1
Pb	1	2	Hg	0.01	0.01
Zn	1	1	Cu,ore-grade	0.01%	0.01%
Мо	1	1			

Inductively coupled argon plasma (ICP) spectroscopy

	Min, ppm	Min, ppm		Min, ppm	Min, ppm
Element	Chemex	Bondar Clegg	Element	<u>Chemex</u>	Bondar Clegg
Ag	0.2	0.2	Ga	10	2
Cu	1	1	K	100	100
Pb	2	2	La	10	1
Zn	2	1	Mg	100	100
Mo	10220, 10741 17	1	Mn	5	1
Ni	1	1 . 1	Na	100	100
Со	1	ne men produktivn b	Nb		1
Al	100	100	Sb	2	2
As	2	5	Sc	1	5
Ba	10	and the 1 marked by	Sn		20
Be	0.5	0.5	Sr	1	10
Bi	2	5	Te		10
Ca	100	100	Ti	100	100
Cd	0.5	100	V	1 .	1
Cr	1	1	W	10	20
Fe	100	100			

ANALYTICAL RESULTS OF MINES, PROSPECTS AND OCCURRENCES

Sample and analytical data are presented in Table 1. In addition to the analytical results, the following information is also listed: map number, field sample number, location of the sample, sample type, sample size and a brief sample description. The results are organized by map number, which are shown on the sample location map (Fig. 3) in the pocket.

Units

All analyses were conducted by commercial laboratories. Results are given by the element's chemical symbol by the following units except when noted by an asterisk (*):

Au, Pt, Pd - parts per billion (ppb)

Ag, Cu, Pd, Zn, Mo, Ni, Co, As, Ba, Be, Bi, Cd, Cr, Ga, Hg, La, Mn, Nb, Sb, Sc, Sn, Sr, Te, V, W - parts per million (ppm)

Al, Ca, Fe, K, Mg, Na, Ti - percent (%)

If followed by an asterisk, Au and Ag values are in ounces per ton (opt) and Cu, Pb, and Zn are in percent.

Abbreviations

Sample location:

a.	at	N	North
@ Ck	Creek	#	number
E	East	Rd	Road
ft	feet	S	South
Is	Island	W	West

Sample types:

Rock Chip

С	continuous chip
CC	chip channel
G	grab
RC	random chip
Rep	representative chip
S	select
SC	spaced chip

Stream Sample SS stream sediment

Sample sites:

FL	float	TP	trench, pit or cut
MD	mine dump	UW	underground workings
MT	mine tailings	OC	outcrop
RC	rubble crop		

Sample descriptions:

a	at	int	intrusive
adj	adjacent	ls	limestone
alt	altered	mag	magnetite
ar	argillite	meta	metamorphic
bt	biotite	ml	malachite
br	breccia/brecciated	mo	molybdenite
calc	calcite/calcareous	msv	massive
cg	coarse-grained	peg	pegmatite
chl	chlorite/chloritic	ро	pyrrhotite
cp	chalcopyrite	porph	porphyry/porphyritic
di	diorite	ру	pyrite/pyritic
dissem	disseminated/disseminations	qz	quartz
dol	dolomite/dolomitic	sed	sediment
fel	felsic	SC	schist
fest	iron stained	sil	silicified/siliceous
fg	fine-grained	sl	sphalerite
gn	galena	sulf	sulfide
gp	graphite/graphitic	vn	vein
gs	greenstone	volc	volcanic
hnbd	hornblende	w/	with
hn	hornfels		

REFERENCES

1. Staff, Alaska Division of Geological and Geophysical Surveys; Staff, Dighem; and Staff, Watts, Griffis and McOuat Limited, 1997, Total field magnetics and electromagnetic anomalies of the Stikine area, Southeast Alaska. ADGGS RI 97-16a-e, 5 sheets.

2. ____, 1997, Total field magnetics of the Stikine area, Southeast Alaska. ADGGS RI 97-17a-e, 5 sheets.

3. ____, 1997, 900 Hz coplanar resistivity of the Stikine area, Southeast Alaska. ADGGS RI 97-18a-e, 5 sheets.

4. ____, 1997, 7200 Hz coplanar resistivity of the Stikine area, Southeast Alaska. ADGGS RI 97-19a-e, 5 sheets.

5. _____, 1997, Flight lines of the Stikine area, Southeast Alaska. ADGGS PDF 97-37a-e, 5 sheets.

6. _____, 1997, Clear film version of RI 97-16. Total field magnetics and electromagnetic anomalies of the Stikine area, Southeast Alaska. ADGGS PDF 97-38a-e, 5 sheets.

7. ____, 1997, 900 Hz coplanar resistivity of the Stikine area, Southeast Alaska. ADGGS PDF 97-39a-e, 5 sheets.

8. ____, 1997, 7200 Hz coplanar resistivity of the Stikine area, Southeast Alaska. ADGGS PDF 97-40a-e, 5 sheets.

9. _____, 1997, Digital archive files of 1997 survey data for the Stikine area, Southeast Alaska. ADGGS PDF 97-41, CD-ROM.

10. _____, 1997, Disks containing gridded files and sections lines of 1997 geophysical survey data for the Stikine area, Southeast Alaska. ADGGS PDF 97-42. Floppy disks.

11. _____, 1997, Portfolio of aeromagnetic and resistivity maps of the Stikine area, Southeast Alaska. ADGGS PDF 97-43.

12. ____, 1997, Project report of the airborne geophysical survey for the Stikine area, Southeast Alaska. ADGGS PDF 97-44.

13. _____, 1997, Total field magnetics and detailed electromagnetic anomalies of the Stikine area, Southeast Alaska. ADGGS PDF 97-45a-k, 11 sheets.

15

Many Statmade Loca	Location	Sample	Sample Samp	Sample Sample De	tsatption	Au30 * Ag	* C4 *		2n * Mo	N Co
No. No			1992			cpt		bpm % 1	wdd 🐝 wdd	niga maja
1 2360	Pinta Point	Rep	oc	Sil sc w/ fg	i dissem sulf				63 6	9 <1
1922	Paria Pohn	0	00	Cp so W/ p	0 & py				88 2	24 11
1 2362	Pinta Point	9	8	Gp sc w/ d	lissem py					82 30
1 2363	Pitrus Poke	Rep.	11 00	Go er é ch	tert witmise & dissemi bill					52 278 21
1 2364	Pinta Point	s	00	0	slate w/ seams of py					427 13
1 2391	Pena Point	9	00	Fel so w/ h	ayarad aki					261 24
2 2365	Pinta Point	\$	So	Sulf-rich le	ens in gp sc					921 69
3 2614	Feku tetei	5	0.1 00	Fractured	& brbasat w/ el elorg frectives		0/08		13.5 0.02	12 15
4 9578	Kuiu Lead Zinc	s	ЧL	Dal w/ gn &	& \$I			*	+	2 1
5 9577	Furthered at beach	0	12 00	Br w/ barBr	e. gn. el jasper chert					3 5
6 9703	Security Cove, W of	Rep	6 OC	Fest fel dike w	ke w/ dissem po	1. 8. A.M. 19				4 <1
7 2375	Nuturis: 3305 h peek	Rep	RC	Fel dites y	el dissem po					8 2
7 2376	Kuiu Is, 3305 ft peak	U		Fel dike w/	/ py & po					8 2
7 8572	Kuiu js. 3306 ft peak	Rep	*7 QC	Fei kit w/ t	itstem modules of fg po					6 2
7 8573	Kuiu Is, 3305 ft peak	Rep		Mafic dike wi	w/ very tg po					29 31
8 104	Nutthem Copper	0	0.5 TP	Feel gs W	by cp					13 44
8 105	Northern Copper	s		Msv po. p)	/, cp, sl					11 55
8 106	Northern Conner	80	20 @ 1 0 TP	Cos wi suff	cores of up py, po si					3 0
8 107	Northern Capper	Rep		Calc gs W/	bands & biebs of po, cp. sl				661 <1	<1 11
6 108	Netthern Copper	Rep	3 NO	Ga we all C	T po. PY					9
8 266	Northern Copper	Rep		Alt sil ar w.	/ dissem sulf in #4 trench				7961 <1	5 13
8 267	Notifierri Copper	Rep	2.2 TP	Ce wi dist	em & mey put in #4 trench					4 82
8 268	Narthern Copper			Gs w/ diss	em & msv sulf					9 169
9 230	Saft Churck area	0	6.6 OC	Q2 MU						9 ×1
9 231	Salt Chuck area	s	RC	Qz vn /sc o	contact w/ py					11 8
10 111	Towars Ck. @ falls		00 00		N PY PN CP					69 42
10 112	Towers Ck, @ falls	G		SC W	fg py, po, cp					54 46
10 113	Towers Ck 🤀 falls	Rep	0.6 0.0		of may fig py, W/ sparse up					48 67
10 270	Towers Ck	Rep	2.1 OC	Gs w/ diss	issem sulf				90 7	50 30
10 271	Towers Ck	Rep		Ga so w/ o	Bosem suff					84 65
-	Towers Ck	Rep		Gs sc w/ d	dissem sulf			00000000	71 13	82 27
11 2345	Towers Ck	\$	0.6 RC	ä	w/ banded suits					136 86
	Towers Ck	SS		Stream in	ßs		114		171 4	29 15
11 2347	TOWERS CK	9		Set gs br w	/ py		8	25	68 S	45 40
1	Towers Ck	RC	1.5 RC	Fest gray :	sc w/ banded & nodular sulf		200		32 25	AC 261
6559 11	Towers Ck	S S		Creek How	ik Hows on gs sc		37		12 41	
12 2358	Salt Chuck area	Rep	0.5 RC	Oz vn			9	2	<1 <1	10 <1
13 60	Portage Ca	8	- KC	Habd rich	d rith int w/ py & ca		233		92 22	0 13
	Portage Ck	IJ	RC	Hnbd rich	int w/ py & cp	<5 <0.1	262		94 1	2 17
13 82	Portage Cx	0	RC	Hended mich	Hit W. Dy & GD		625			2 31
	Portage Ck	sc	15 @ 1.0 OC	Homblandite w	lite w/ cp. py	and the second	1853	11	143 2	3 48
13 139	Porteos Ck	SC	15 23 1.0 00	Hombland	te w/ co. py		4866			19 +
1	Portage Ck	SC		Hombland	ite w/ sulf		1111			4 30
	Portaçãe Cik	0	2.5 00	Homblend	tte w/ py, cp		2692	8	221 2	* 22B
	Portage Ck	sc	40@2 OC	Homblendite	lite w/ sulf		2597		164 2	5 47

E F																																						6 3	<5 3	38	5 24	81.8	<6 12	0 28	7 13
W W	<20	×20	<20	620	<20		<20		<20		20	20	<20	639	<20	075	<20	629	<20	<20	<20		<20	•20	<20	<20	<20	200	<20	2	<20	8	<20	<20	<20	-20	<20	630		2.02		1.89	<20	2.24	1
V	$\overline{\nabla}$	1.	316	180	78	8	210	39	V	••	2	ø		••	89	8	4	9	с	e i	9		4		17		245		226	99	156	8	29		48	23	3		332	362	367	360	466		354
-	\$0.01	10.0	<0.01	10.0	<0.01	K0 (0)	0.2	юх	\$0.01	10.01	<0.01	80.0	0.01	90.0	0.33	1010	<0.01	0.01	<0.01	60.0	0.01	3010	<0.01	10.01	<0.01	0	0.3	05-20	0.29		0.26	0.23	0.1	0.43	0.44	0.1	<0.01	0,18	0.13	0.12	0.31		0.21		0.27
8	<10	X 7.0		<				xxx:		<u></u>	4 .													X2-003		<i>.</i>						A		00004							1.1.1.1.1.1	600 M	<10	200224	
35 M M	17	115	10	10	151		29	60	20	202	8		4	8	2		2		4	99	38		2		17		22		36		53	60	23		43		1		248	376	8 5	9	200		138
US HOD		100		1	12			100	1.1	8/60				222				1 M .		.		****		88		****		888			1.3	<i></i>	1					e					<20	202 I	
96 D0m		188		1 22		097		102	1	8200		1 22	1.53	102		822		0.			- 68	***				822		88 I.		222		202	3		123			. S.		1 88			14	3 22	
18 J		R		88				Ref.	ľ`î	æ						822						222		***		888		***		88	1	20 I	1										9> 1	3 88	
N B		102						.		128					- 43	223		W.								22		***	- 93			30							1				2 24		
- \$1222276		2000		essa:	1.1	200	13	2002	1.1	100 C	1.1		1.00	100 M		2003		67.XX		11.	1.1.1	1222		×~~	- 23	3726			- 23	600 M	3	26.4	1.5	·	- 33			1.00	52	1.1.			0.52	6. S. I	
M	162		1000	101	301	487	381	100	>20000	1616	37	Ŭ.	32	22	521		116		1202	3006	3380	1991	461	12	441	¥.	879		94C		843		942	238	366	800	37	0	1116	1206	2083		2396		1976
2*	0,04	111	3.69	69.1	0.42	1 05	2.35	0.05	0.1	0.31	0.02	900	0.07	90.06	1.51	0.020	0.03	80.0	0.07	90.0	0.11		0.07	0.02	0.25	Č.	2.81		2.46		1.66		0.81	0.37	0.36	890	0.02	3.13	2.38	664	3.37		3.69		2.82
3:000000		2300	1	6 X X				2,000	1.1.1	E 2660		599X		1.68		2222	1.13	1.52				1777 A		13.2			1	8888	1	26 X	- 3	××4	5	1.11		1.226	1.1	19.00	54	5666X	1.11	1.00	10	2.33	6
¥ %	0.31	81.0	0.08	0.10	0.13	21.0	0.06	6.0	0.07	80.0	0,12	012	0.11	310	0.85	10.0	0.01	10.0	0.01	20.0	0.03	1010	0.01	10.0	0.02	0.00	0.05		0.1	20	0.06	000	0.07	0.03	0.12	90.05	0.01	0.33	0.57	*0	2.15	100	2.58		1.56
f is	027	820	024	0.33				8¥ 11																																					0.01
	0	0	0																											*	1													0	V
6 Ga	8 8		2		and the second se					100																						<i></i>			10					K.					
	R	3.5	ŝ	200																																							16.37		
50m	12	81	82	132	11	88	81	8	25		121																							2.2.1		6 X I	1.1	1.1.1		27.77	1.11	8 X X	1 3		
2 ig	<0.2	2.02	0,6	3.9	5.4	8	5.2	*100.0	057.4	49.8	1.1	0	<0.2	20	<0.2	9.0	2.1	£ 1	3.7	999	34.1	11	0.7	2 O ×	<0.2	6.0	<0.2	.	0.3	10	0.6	*0*	-	50 S	<0.2	2.00	<0.2	2.0%	<0.2	405	<0.2	2	<0.2	202	<0.2
3*	0.29	174	0.16	223	4.83	99	0.52	1.0	0.4	3.65	0.02	0.16	0.06	91.6	2.17	3 12	0.01	9.69	1,06	53 3	3.45	2.21	0.38	3.02	3.48	000	1.53		2.76	181	3.23		0.56	82.1	2.41	H	0.01	3.95	4.07	375	2.79	88	3.59		3.11
8	\$5	62	<5	÷	<5		\$ \$		<u><5</u>	Ŷ	\$2 V		<5		\$		<5 <(÷.	\$	Ŷ	\$	- 0	<5	.0,	<5 .		<5	÷.	<5	\$ *	<5	ç	<5 (45	<5	\$ 2	<5		<5 <5	-	\$2	49 19	<5		<22 <2
Be ono					1. 1.			9.2																																					18 <5 3
88	20	60	28	80	15	~	₽	90	e	10	611		25	150	70	91	۰,	-	43		4	61	3	4	49	16	16	87	25	9	8		84	8	σ	69	~	2	136	20	24	11	49		18
As Pron	8	60	\$5	Đ	287		25	et T	19	9	13		\$2	9	13	5	\$5	9	<5	9	œ	\$	<5 <5	Ş	\$2		18		18		34		40	10	15		\$2	Ş	\$	2	~2		<5		<5
	0.4	*	3.2		0.5	F	2.0	0.3	0.1	0.0	o	TO	0.4	0	3.1	0	0.0	0	0.1	ð	0,3		0.0	0.0	0.2		2.8	30	2.7		1,8	0.3	1.3	0.0	0.5		0.0	3.5	3.6		4.0		5.01		3.7
etom	160	19	362	194	364	166	365	2614	578	1	203	375	376	572	573	×	75		27	94	90	37	38	90	31		12	BI	2		72	345	346	242	558	956	358				38	0	140		367
S de	2		3		5	£	5	K.	ð		6	ť	3	ð	Ğ,	Í	1(Ĕ	Ĩ	26	R	26	×	3		1	1	0 2		0 2	2	1 2.	3	1 9	1 0	2 2	1	3 6	3 6.	3 1	1	3 1	1	3 2
22	-	10	-	<u>1</u>	1=		10	10%	4	140	(O	1999	1	10-5	1-	100	0	1005	00	100	0	00	8	i ch	တ		Ē	1	Ē		Ē		-		-	<u>.</u>	-	1	E	1		1	-		

M. Co Dom Dom	6 57	7 56	2 15	3 27	2 23	7 30	5	1 20	2 18	4 4	20 15	16 3	<1 8	<1 2	2 18	44 12	59 13	14 1	47 14	15 <1	13 3	3 <1	8	5 <1	6 2	49 15	10 3	64 33	29 10	38 13	54 23	11 <1	13 KI	20 <1	13 11	8 3	8 8	10 <1	8 <1	2 <1	1 2	4 2	9 01	6 2	40 29
n * Mo n % com		4 4	6 2		4 2	9 5	6 c1	1 <1	g 2	8 4	8 <4	v			2 et	2 3	0 2		~		1	1 * 2	6.8	* *	۲ 3	1 * 3	+	2 2	6 ×1	6 7		3 * 8						2 0		3 * 3	e e	9		9 <1	F 6
5 . 2	21		98																				•			+										A							634		
100 v			7			Alexanda A				10000	- 20	STAND S		2012				10.00				1000										- 24											121		
* Cu of oom	1056	4294	329	22		708	19	215	10	30	264	1775	11	17855	9	27	21	4	33	4	91	70	47	5	10	453	69	398	92	47	11	58	5 2	33	48	51	11	518	247	298	413	400	8	12	187
A0 000 0	2.0	0.3	10	0.2		0.3	1.02	<0.1	40.1	0.3	90	2.2	6.6	3.4		0.3	1.3	<0.1	6.0	<0.1	35.9	>500	160	4.1	6.9	83	101	1.2	90	0.2	F 0	24.2	25.3	9.3	19.7	30.8	0.2	15.9	828	151	28.8	31.2	0.2	<0,1	0.3
Acco a	2	2	94	<5		9	9	<5	ç	59	8	64	61	31		<5	ç	<5	ç	<5	9	88	903	32	621	183	976	<5	•	187	67	24	24	6	9	20		59	92	347	88	85	8	<5	•
						0, CP					58									in Is										site sc															
		, mal & py	be 00	bo		fg dissem p		& cp	P0 , 60		bands & bh			0. cp		X	Ad Jan		tole w/ py	rs & lanses		and the second second				e				in gz-serie		sl		ulf	let (If	<u>, </u>	Y		py and gn		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Description	endite w/ au	endite w/ cp		li w/ dissem	10 (C) (C)	gray volc wi	on in wy py	ich int w/ py	Weesp /A I	YQ BI W DS	M IS & CO M		w pyr po co	d Xd /m sb I	83	icite sc w/ p	-sericite ac			ar az stringe	11 11 11 11 11 11 11 11 11 11 11 11 11	w/ sulf		v/ sulf	54 14 U	w/ py, sl & g	NI 62 6 11	2	er sud	aring sil bar		slate w/ py &	nd in Slate	k slate w/ s	ik slate w/ a	d in slate	id hi feet ge	w/ very fg su	w banded p	d barite w/ p	10 the second	w/ bands of	949		08.80
pie Sample	Home	Hornble	Hubd d	p pquH	15000	Green	Hind o	Hubd n	Hatod d	Sil gs s	O2 VII	QZ VN	SH GB V	Fest si	SH GS V	Qz-ser	Feel qu	Oz vn	Feet by	Irregula	Ect to a	Dol Is v	GORBAN	Dol Is v	GOSSA	Dol Is v	CHBY IS	Fest gs	Oz WI	Sulf be	201	Black s	Sulf be	Sil blac	Set blac	Py ban	Oz ber	Barite	Barthe	Bandeo	Bartter	Barite	02.8.0	OZ VI	fest al
1988	34 00		10.500	1.0		RC	PC.	OC	8	8	OC	RC	8	20	80	8	00	00	00		00	QW	16	TP	00	QW	80	So	00	oc								OW	CIVE	QW	OW	OW	00	00	90
Sample Sample Tune Sun (ft.)			C 10 C 0.5	C 18 @		0.3			C 0.8		C 0.5				Rep 1		K0 04		\$		Rep 0.7			U U	ep 0.8		Rep 1.5		G 02		Rep 0.13				Rep 1.5		ep 0.5			0.4			075	1	
31	8	S	9	õ	8	G	60	Å	0	с П	0	æ	8	U	8	U	a.	R	8	œ	A	S	9	R	N N	U	a	Ř	0	Ω.	R R	æ	8	Ω.	8	U	Rep	G	0	U	0	U	skie C		wend G
c	0	e Ck	0	٥ کړ	E C	a Ck	6 Ck	e CK	s ck	id Zinc	id Zanc	od Zinc	uck (nuck	urt	Vrm	u,	Vm	, Am	Arm	Tavics Ck. (2 hit	č	ck, @ hit	Ck, @ hill	Tavby Ck	Ck. @ pit	Taylor Ck	Arm	tur,	Point	Point	River, N of	Castle River, N of	River, Nof	Castle River, N of	River, N of	Castle River area	Is Barite	Castle is Sams	Castle Is Barite	Castie is Bartie	Is Barite	Castle la Bartle, E	Is Barite	Castle is Barile, SW and
H LOON	Portage Ck		Portage Ck		Portage Ck	Portage	Portage Ck	Portage	Portage CK	Coonro	Conrod 2mc	Coonro	Self Chuck	Salt Ch	Salt Church	North A	North Arm	North A	Towers Arm	Towers Arm	Tavior	Taylor	Taylor Ck.	Taylor	Tavior	Taylor	Tavior	Narth Arm	North Ann	Indian	Indian Point	Castle	Castle	Castle	Castle	Castle River,	Castle	Castle	Castle	Castle	Castle	Castle	Castle	Castle	Castle
Map Sam	9902 OB	13 2369	13 9599		14 136	14 137	14 232	14 233	14 9535	15 114	P	15 273	16 100	16 110	16 269	17 56	17 57	17 228	18 59	19 58	20 53	20 54	20 226	20 227	21 51	21 52	21 225	22 55	22 228	23 50	23 224	24 47	24 46	24 222	24 223	24 2622	26 49	26 42	26 43	26 46	26 218	26 2621	27 44	27 219	28 45

Pd k	10 10 10 10 10 10	5 8	6	13 21	00 E	<5 <1	8 8	5 7																																					
M	8	8	0.	8	128		\$ %		823	<20	•30	<20	-20	<20	022	<20	035	<20	2	<20	022	<20	065	<20	-20	<20	\$20	<20	220	<20		<20		<20	-30	<10	02.	<20	650	<20	2	30	00	<20	DX
X		291	171	499	308	160	103	144	181		7	2		2		34	12	9	8	1>		3		2	0	5		178		3		4		19	0	-		3		-		6		10	88
u		0.3	0.13	0.22	0 24	0.13	010	0,16	×0.18	<0.01	10.03	<0.01	0.0	0,06	0.06	0.02	10/00	<0.01	10 02	<0.01	0.02	<0.01		<0.01	10.05	<0.01	10'02	0.6	c10 0.32	<0.01	1010	<0.01	111	<0.01	10.01	<.01	10.05	<0.01	1111	<0.01	0.01	<,01	0.01	<0.01	10 01
Ie	500 0	<10	010	<10	013	<10	015	<10	01×	<10	×10	<10		<10		<10	018		01.		0)>>		0)}>		012	<10	410	<10	012	<10	015	<10	0	<10	015		200	<10		<10	012		<10	<10	*10
5	ä	8 S	279		1000	1 22	11	- 33	316	2	94	1		1 10				÷	110		08	24	88	39		20	90	23	81	21		19		96		29	201	25		67	101	46		191	148
5		6I -	022					9	822	<20		1	80	10		18		1	11.	1	22								8			<20		<20	1			<20		<20			22	<20	8
0			9 28						W	5 <5			*							5 <5					3× 5	- 33	KW.			<u>c</u> <5	82			8 <5		- 33		3			6 0	4 <1		5 <5	
Q		1		23 <					0	<1 <5						5 ×		5 <		<1 <		<1 18				1 3	8 M. I.	3 8	8888	<1 10				1 2		4		<1 5		<1 92	1 80	ŝ		1 <	
1		49	0.26						æ	<0.01	01		88		01	02	01	01	10		01	01					82	1993	W	0.02				01	0	<,01	0.04	1000		01 <		<.01	05	01	0
		хi ÷	10000	100	3 <i></i> :	1.1	42 0	39 0	16 0	44 <0	0× 14	35 <0	16 0	20 0		46 0	0 89	26 <0	25 0	41 0	0×-74	44 <0		6700 <0		2149 <0				575 0									10 0** 82	1.55	6466	35 <	0	18 <0	53 0
- 8000	8 Ø	8 3	12	1	6				10/		8//	1.3						1																		1.42.5		322.3					X	31	*
940	<i></i>	2.15	1.84	2.06	1.87	0.7		1.56	68	<0.01	10 D>	<0.01	33.03	<0.01	202	0.47	11.15	4.12	3.08	0,05	90 E	3.35	000	7.72		2.16	2.0		1 00		0230	0.56		2.89		0.48	003	<0.01	10.01	<0.01		<.01	50	1.05	X
	uda	11	t		Ð		9			ľ	•	<1	•			v			81	7	2	3		5	•	V	Ŧ		**			<1		2	1.	<10	ł	5		<1>		<10		-	\$
X	,	0.94	10	0,3	0.45	0.23	.	100	8886	0.06			3334	1.13	10.04	0.05	0.06	<0.01		<0.01	202	<0.01		<0.01	1.556	<0.01	2110	1.1	100	1.4		- 66	222	1			00	×.	10 04	<0.01		<.01	0	0.08	ð
94	1000	<0.01	10.02	<0.01	\$0.01	<0.01	0.033	0.012	10.01	0.028	0.335	0.215	2030	0.038	0.037	0.103	666	0.108	0.052	0,104		24.3	00	0.221	5 280	25.02	4 362	0.413	0.000	0.15	0.167	36.38	31/1/0	5,551	(5,2)	40,8	0.0	3,255	6.096	3.331	30739	4.4	0.520	0.08	0.134
3	e :	ŝ		<2	Ŷ	\$		\$2		\$		<2				1943				and a second				<2		<2	Q	~		<2		<2				10	2	\$	~	2		<10		3	2
		1.07	8	3.97	1.32	3.74		3.92	86	1.77	9.69	1.22		5,84	949	8.6		1.05	10),34	6.84	1.7	0	2,59	10	10	88	7.37	81	10	88		222	10	10	2,00 <		7.24	36	0,94		2.99 <	0	.03	
3		47 2		25 1(7 1		S.	13	37	90	69		8		80		83		22		1		2	•	48	9	30		117	66	39		39		18 >1	2	16	9	2 (8		90	2
3	bon pc	0.2		0.2	20																																					19		0.4 1	8
	****	8	2000		1 X X				1 (1)		2.22		28828		5.CO)	1.1.1	N				E .2827.				SX //		2260		1.000		2. Side		- 2003			1	13333		8-XXX	1.1	5 X X X	1 1			
5	,	4 0.	46 27	2.8	00	1,8,	5.5	2.10	3.0	00	91	0.0		0.0	0.1	1.	9.9	7.4	Ĩ	0,6	0.0	7.2	0.0	7	0	3.4	Ĭ	1.1	F 1	à		1.5		5.5	5.5	1,7	8.8	0.05	0	.0°0>	0.0	0.2	80.0	4.2	Ð.A
	nod frod for	22 22		\$ ²	8	\$5	\$2	\$5	8	\$5	2	<5	9	\$		<5	2	\$¥		\$		\$5	\$ 2	\$	5	\$	P	\$		\$	9	\$5	9	\$	32	5	2	\$5	9	\$	7	\$		<5×	7
B				6		4		~		~		2		1				1		6		7	8	5	9	6		2		0	9	c)				× 0		1		0		× 0		9	
- 8399		2	55 56	4	1220	4	\$2.32		3		1	1	8-33A		8.77	1	š:	1	£207		£X.60	1.00	82 M.		¥ 🔅	8 2	¥	1	5 83						•		6 163			4		4 10		5 97	3 47
	uod .	V		v				V		5		3				1		V	9	ľ		6	13.6	9	÷	43	11	ľ		4	80	65	8	42	Ť	78		18	30	9		13	01	v	
R	*	3.31	2.75	2.49	3.01	3.77	3.28	2.48	3.3	0.07	60.0	0.06	1.0	0,16	0.76	6.98	90.8	0.81	55.2	0.03	10.0	0.03	10.0	0.04	0.00	0.02	000	2.83	99	0.21	0.15	0,1	¥1 ()	0,09	000	0.03	94.0	<0.01	10.0*	<0.01	0.0	<.01	120	0.14	
1.52	141	236	OHO	960	136	137	2222	233	998	114	115	273	109	110	269	56	67	229	66	58	60	54	228	227	10	52	225	55	122	50	224	47	÷	222	223	262	61	42	2	46	216	262		219	5
	2	1.1		13		14		14		15	91	15	9	16	101	17		17		18	8	20	30	20	0	21	6	22	8	23	R	24	8	24		24	S	26	56	26	38	26		27	2

4 Co n Dum	9 13	4 26	1 2	1 15	8 15	20 2	2 2	1 17	3 14	8 25	13 3		19 7	1	15 1	8 18	7 31	2 47	6 2	10	20 18	28 20	13 <1	28	39 17	2	9 34	8	4 <1		6 5	< 4 40	8 1	0	1 35		6 25	7 21	21 6	02 0	0 5	9	29 26	8 8	4 5
Ma Moa	<1 1	12	9	1	1 4		1 1	0	1	×1 - 2	2	2 5	3	2	3		2	×1 2	<1		3 2	2	2 1		3 3	1	2	64	1	FN	2		2	~	2 6	2 - 1 2 1	7 6	8	4 2				2 2		
Zri ? Don %	88	173	425	66	59		42	*10000	>10000	>10000	1042	314	5.4 *	2870	337	885	258	846	8.5 *	83 *	14330	9650	491	2471	4 *	513	945	18343	330	*10000	12.8 *	4642	7758	133	306	131	145	126	237	112	85	29	67	42	34
44 Digo	21	9	115	2	5	11	7	>10000	>10000	2150	795	1	7539	606	442	665	86	454	÷	6811	1888	927	283	958	. 1	582	629	3175	500	7200	1,09	925	1,74	88	37	92	66	12	190	25	36	1844	17	300	30
Cu topm	65	81	ß	101	104	2	73	592	370	230	208	181	54	12	8	116	570	90	60	23	135	111	50	254	66	336	573	9	10	53	. 64	63	. 39	106	196	OHC	174	164	87	164	48	69	139	29	55
of com op	<0.1	40.1	0.5	1.02	<0.1	×0.1	<0.1	*100.0	>100.0	78	* 22.7	1.7	38.9	F1	2.9	# 12	1.6	3	53	46.6	16.5	5.31	2.6	61	17	14	3.3	16.5	1.8	67	1.783	15.8	2,128	0.6	0.4	0.8	0.5	0.4	0.5	0.5	<0.1	3.2	0.7	•	<0.1
Au30 pob a	<5	5×	<5	45	<5	6 5	<5	310	450	90	0.328	1.0	82	5	15	30	4248	65	120	150	8>	8>	4536	H	92	9 ×	68	35	10	80	132	48	75	1208	25	20	20	9	383	2981		30	679	294	\$
e Banole Destruction	Fest ail arean-gray ac w/ pv	Fest sit gs	Sil, br rhyolite w/ py in br	Fest marbie	Fest qz & marble	Oz celo vn wi sudi	Fest is & marble	Servite so w/ lenses & bands of si & py	Msv sulf w/ sl & py in fel sc	Shi mev suli wi py & si	Oz vn w/ inclusions of gs w/ py	G8	Sit volc w/ sulf	Qr wi	Qz wn	Fest al ga	Slightly sit gs w/ trace py	am in ge to	Fest gz vn w/ sulf bands	Fest oz vn wi sult bands	ple	Sample of mine tellings	QZ	Ge	Sulf	02.45	Slate & sc	Gz wi wi suff	Qz vn	May suff. Dy si	Oz vn & sil thr zone in fest slate	Oz vn & sil in zone in fest siste	Oz vn w/ sulf	Soit sampte takan 🕲 surtara	Gs w/ dissem py	So w/ thin hands of disseminatif	Sil gs sc w/ sulf	Oz wi całć & py	Qz vn w/ minor py	28	Slate	Oz vn in dol w/ minor py	Sheared dol w/ qz stringers & minor py	Gz-cak m w/ py	Oz vn
a Sample	8	00	RC	00	oc	RC	ő	8	00	00	8	00	QW	ΔL	00	41	QW		MO	QM	MT	174	QW	WD	QW	ЧĻ	ΤP	RC	oc	CIVE	oc	00	QM		00	90	oc	00	MN	MA	MN	MU	MN	dL	00
pie Sample Size (R.)	8		0.3	3		l.			1.9	1		0.4		23	1.2											9		9.0			8'0	2.6							1,3	0.8	0.8	0.8			1.8
Samp	9	9	9	Rep	Rep	9	Rep	0	U	0	Rep	Rep	s	0	o	0	0	88	U	0	SS	88	0	0	s	day	RC	0	Rep	PC PC	U	C	υ	99	Rep	0	Rep	o	CC	CC	8	8	Rep	Rep	Rep
Location	Castle Is Barite	Castia la Bartia	Totem Bay. N of	Duncari Canal area	Duncan Canal area	Dancen Canel mot	Duncan Canal area	Lost Laka	Lost Lake	Lost Lake	Helen S, shaft	Halan S. shaft	Helen S, shaft	Heien 8	Halen S	Heiter: S	Halen S	Halan S	Helen S	Helen S	Helen S	Heten 8	Halan S	Haten S	Helen S	Hister S	Helen S	Heten S	Helen S	Huten S	Helen S	Halen S	Helen S	Harvey Lake trail	Harvey Lake trail	Harvey Lake Trail	Harvey Ck	Harvey Lake	Maid of Mexico	Mald of Mexico	Maid of Mexico	Addied of Adexicas	Maid of Mexico	Maid of Maxico	Maid of Mexico
Map Sample	ŝ.	221	8	30 24		30 26		31 2627	31 2628	31 2826	32 30	32 31	32 32	32 33	32 34	32 36	32 36	28 25	32 38	32 39	32 40	11 20	32 213	32 214	32 215	32 216	32 217	32 2359	32 2623	32 2624	32 9565	32 9566	32 9700	32 9569	33 9568	33 8591		34 9667		35 2382	35 2383	35 2384		35 2386	

10
ő
d
an
ŝ
8
Š
ŝ
ais
Ĕ
õ
8
-
R
g
Ś
S.
5
Ē
2
Ö
H
ĕ
ŝ
5
mines, prospects, occurrences, and reconnaissance s
ŝ
Ĕ.
i mines
F
õ
Į.
It s
SU
ē
-
<u>.</u>
nalytical results from mines, prospects
a
A
-
a
Lable
La a

deg dag	1				Γ																																							
pm ppm i	9 <20	0220				188		13 <10	1 <10	1 <10		9 ~20		02		0.55 0		0.000		0.000	63 <20	-22 A	7 <20	21	- 18	81	1 <20	5 <10	100		022	1 <20	0.55	8 <20	02000	9 <20	022 0	6 <20		9 <20	0 × 50	3 <20	075 6	00
10 pp 11		01 159	1	01 125		0.01 15		01 1	01	×.01 11		01 229		6 10.03		22	0.04 409	0.09 21			0.03 6	20	1		- 8	33	0.24 201			01 15	01				0.08 22	01 99		01 16			01 20	01 33	1	
u	10 <0.01	0.02 015		<10 <0 01	<10 <0.01	0~01-	<10 <0.01		×	*	<10 <0.01	10 0	1 T (02-012	<10 <0.01		<10 0.	¥.			<10 0.		<10 <0.		<10 <0.		<10 01>	ý V	0 ×	35 <0.01	<0 <0 01	<10 <0.01	888		10 0	<10 <0.01	////	- 8	999 I.	<10 <0.01		10 <0.	0 01	
pem p	324 <	011		333	- 33	544	. 3	÷	<1		4	9	11 -		- 553	882		17			78 <		×.	20	2	22	× 67	10						13	22	49 <	201	3		256 <	8	113 <	26	6
mog mag	<20	629	12			0			ANALANA ANALA			8 29		022		820		82		252	<20	8	<20	2	<20	8	12				925	<20	082	<20		<20		<20	0	<20	ŝ	<20	~50	
udd udd	5 8	81 8		5 18		9× 0	0 10	*	8 <1			92 9		82 8	5 <5		5 30			2	4 7		1	2			3.3				6 • • • •	2 <5		9 18	91		8	<5 <5	0	5 <5	2	5 7	0	
ni ppr	1 <		V			ŝ		144	13	*		Å	<1 107				<1 <5		<1 3		1 2	%	1		<1 15		C> −		112		01 10			10		6 <	×			6 <5		3 <	2	Contraction of the
	0.01	00	0.03	20 0	0.01		0.02	10 4	<.01	10>	0.01	10.0	0.01	0.01	<0.01	1000	0.02	0.08	0.01	100	0.17	030	0.01	0.02	0.01		10.0	x 01	10.2		10.05	<0.01	20.0	0.03	10.0	<0.01	100	<0.01	0.0	<0.01	ä	0.01	10.0	Contraction of the
		191			- 399		- 53	c		3.XX		2,000	957 <		107 <		844	1003	236 <		3560	88	72 <		774 <	010	524	415	998					1.15	S			288 <	3921	420 <	ģ	126	¥ 293	Contraction of the second s
	1000	961		52	39	I.	63			0.02			3		1.1								1						0.02				0.87					0.38	80	0,66		18		and a second sec
E.	100	ï	1.5	8				10 0		410 O		Ŧ	1 00	0 1							8 1		<1 0.		2		9	10	0 01-	<1 0	2 80	<1 <0.		6 2.		8		<1 0.	64 63	5 0.		3 2.	«1 D	Contraction of the second s
4	0.16	0.26	0.16	10.0	0.05	0 02		0.03		10.0		0 13	<0.01	100				0.05	0.01	10.0	0.11	210	1	21	0.05	200	0.93	21	* 10 *		0.00	0.02	10.0	0.03	0.02	0.2	016	0.06		0.15	0.06	0.32		
ppm	1	91.10	- 33	0.298	0.09	0.022		•100	12	×100	1.02	0.13	22.06 <	1.111		4 00 F		0.382	20.42 <						17.062		0.461	81.			\$ XXX	5.084		- 33	0.252			1	***	0.09	***	0.637		
£	1000		<10		3		0.00.0			-10			<2						1000				1		<2 17	2			015				9	11000				<2 <2		2			2	100 C
10	.04	.0	.03 <	• • •	.42	98	.76	88	10,9	101	100	10		1 16	1999		10	38	. 83				. 92			2	10	8.	¥ 00	.45	88	.54	19	. 77 .		. 07	22	.57	2	. 83		. 93	51	
50	24 4		50 5	- 9/	84 5	165	54 3	123		132 1			77		1.10	99	47	19 6	162 3	80	13 7	36	86 C	22	52				31 21	74 5	228	45 5	349	167 16	180 1	81 7		187 1		19 1	Ì	43 6		
10 DE	:0.2		1 60	0.2	<0.2	×0.2		x	2	>100.0			152.1	2 4 2		9.0	4.7			822			9.6 1		105.4	4	4 19	23	*100.0	34.2	9 2		i 22		1 2.0>		0			1.8		- 50	1 2 2	ł
4 Y						5.00		1 0 00 >10		5 Z A S	0.82			100	0.02			90					1		2.92 1(8	1	21	- 8/2/3	S	800									08	37	03	26	
	1. 3		<2 0.	w.			1	KW)	1 13	£0007	28 S	2/0//															<5 1.7		101 22	a	0 52		4D 010		2.		×5 7	1			10.0	<5 8.03	2 <u>9</u> ×	2
pen pe			<.5 <					\$ *		8 *													-					83 - E	-															
mod mod mod	552	1112	30	00	214	#8 #	53	01	10	10	57	163	21	92	65	2	181	325	2	•	69	46	34		<1	2	68		0	3	43	12	38	6	13	21	90	20	8	33		68	32	No. of the local distance of the local dista
mon		9	150	8	74	9.	19	Ŧ	8	C.E	892	81	347	9	\$5	13	1471	38	72	18	371	166	317	88	209	Ŷ	6	a	940	86	54	88	24	34	30	25	12	229	NO:	8	9	510	01	
*	0.4	101	0.29	14.0	0.79	0.25	0.37	110	0.08	0.21	0.42	61.4	0.02	0.05	0.04	1.85	2.88		0.05	100	0.65	0.64	0.11		0.14		3.07	600	100	0.11	0.14	0.05	1.98	1.95	12	1.37	0.78	0.21	0.63	0.28	010	0.62	0.22	「「「「「「」」「「」」「」」」
Z	C		26				0	10	28	50													9		5	0	7												82	83	10	85	88	
2		22 85	2626	24	25	26	21	2627	26	2629	30	16	32	33	S	36	36		38	90	8	÷	21		215		217	30	2029	95	96	26	95	3 85	98	3 9701	0990	5 238	236	5 23	238.	-	35 23	ģ

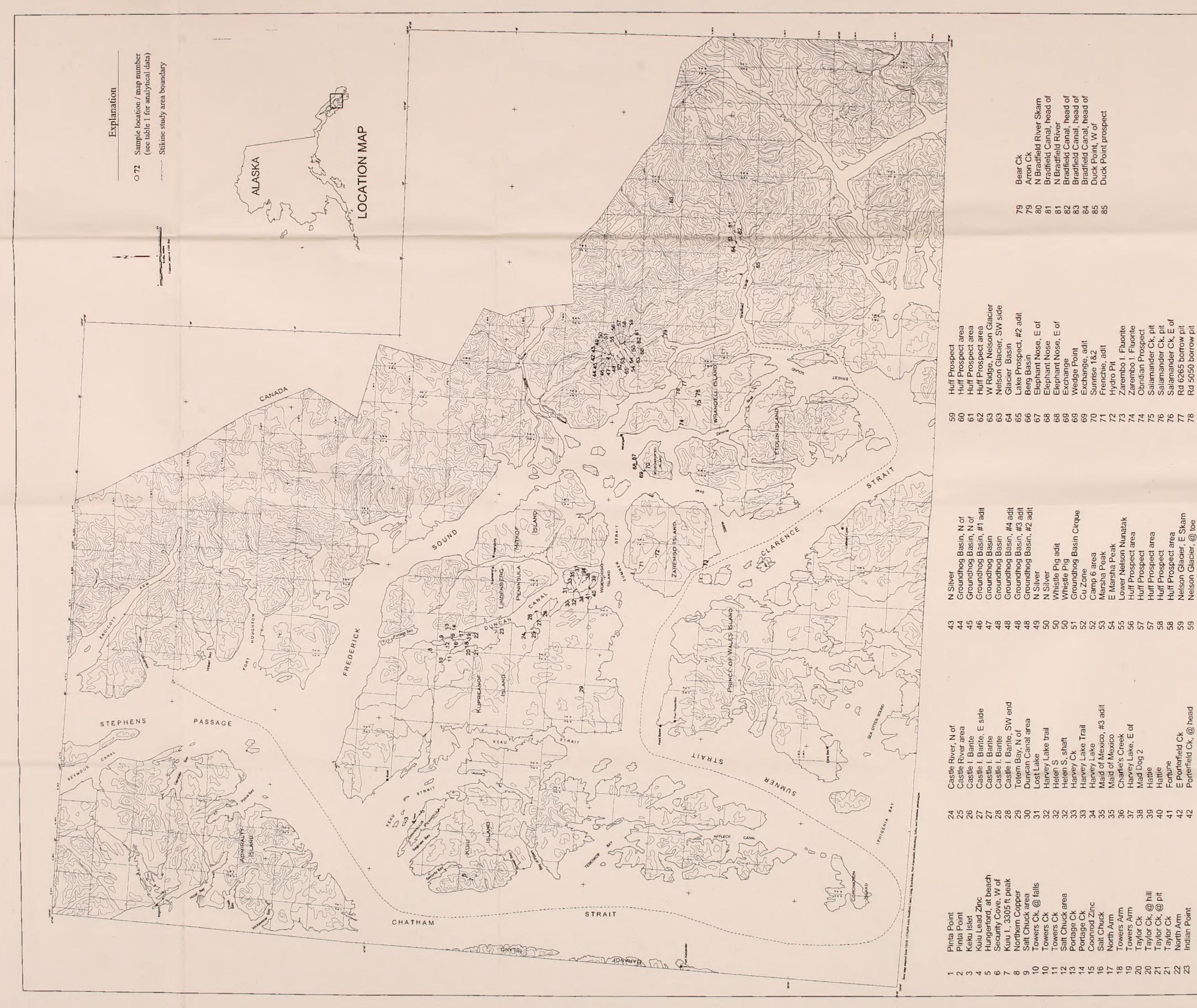
8	ppm	24	117	113	6	202	11	38	11	8	S	•	2		2	•	З	\$	45		61	0	37	8	20	50	2		5		8		V		17		26		18	8	16	•	11	8	7	101
N	mqq n	38	9 216	102 0	1 20	0 59	8 21	5 51	1 2	82	1 11	2 16	2 6	9 8	3 7	•	3 9	3 10	2 14	1 28	1 18		2 23	2 64	2 14	0 00	4 21		1 8		2 12	0	2 2	8	3 25	.	1 9		4 13		1 10		1 7	2	1 3	
Ν.	udd w				0.0		1		v		V								*		*				*		+ 1		•		5392				* 3	o	*		0.3		₹ *		× *	E O	۷ +	
55	undd	203	619	1.10	0.02		26	818	7481	3.9	32	99	186	316	26	35	25	61	18.28	10.	20.11		334	10	3.55	617.9	2.36		2.86	0818	67	0.00	3340	7231	4.1		16.03	0000	8.58	1500	8.9	11	12.3		9.47	1000
	% I		10		~		_		10		-		6		(0		2		*		*				ł.		*		*								and the second								*	
đ	mqq	136	4226	202	0.02		v	9	115	E.	×		76	10					9.76	1×1	7.35		19	Ť	22.	2002	28.34	4.66	48.6	808	2:	1223	4726	024	5.9	5.00	152	*10000	0.25	¥	1926	10.87	368	0.0	11	
3	рт %	あ	181	222	.01		75	161	322	12	11	•	g	•	2	8	3	80	256	02	368	63	372	67	80	30	193	17	04	62	20	90	88	88	05	88	172	60	.66	46	00	22	1185	71	96	11
	d j		*		0	X			0	1										3	4		23		*		*		- 11		ta des des		1		- 12		æ	ł	1		* 31	1	11	0	C ¥	
96	lo iudi	9 8	622		<.001	0.0	<.2	2.0	16.6		<.2	0.1	0.4		<.2	22	<.2	2	30.4	196	617		4.5	0.2	323	8.8	16.275	033	303	34.9	0.3		6.3	8.5	6.4	-001	7	82	001	18	1.9	• • •	35.7	100	464	
			*		v								AND AND AND		a da da ana a				G						119		16		84		1								×					0	79.	0.0
067	BPB 0	666	1.02	010	80	100	\$2	9.2	676	693	45	9 ×	<5	10	<5	9.	<5	ç	295	690	255	028	<5	ş	372		287		111	90	7	9	<5>	Ş	99	30	16	15	<5	H	14		8	9	408	6.91
				ł.																																					No. 6 Contraction				SECOND SIDE	
						61			talf										Section 1						A. S. F. S. S.			4 by	1000										and a set of	host	11. A. 1.				C. N. M. W. W.	
						D coll			anded a						States -				and the second	LAT			Charles and	1 8131	py, po	0.643		th not	in station	this me	ures									hosed	Access 201				sl, gn	
8		qž			1. 10 B				msv ba						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				0	N 19 K	38		8	deser	Jn. cp.	NO UN	sl, po	8 (B) A	S. S	10	in fract	00.00	gn. po	gn, pa	19.35	ands w/ po, py, el, gr			sl	Hamon	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	14			lossan,	Constant Section of the local
BOTTON		1 dol &	ntrate	nuale	suff	1. N. 1	Section 2		/M 88 p						and the second		N.		in sig	bands	s in sil		r w/ po	018.8 W	W/ &l,	0 110	w/ gn.		fault	BLOX 1	W/ WO		te w/sl	te wist	one	wi po.	sl, gn, cj		po, py	tu ut tit	one	b ut	ene	٨d ·	3 /M OU	
0 olqu		t teed c	I conce	I CONNER	IN NI	-11011	(d vsm	61 611 80	athere	HE ASU	An V	us	'n	m	N	5	ц	4	If band	81 gs W	If band		boulde	The CUT	sulf vn	681 204	sulf vn	ut pou	v gn in	CONTRAC	granite	A Gran	st gran	at gran	v sulf z		bo	2	volc w/	North St	v sulf z	V 10 DO	v sulf z	V BI, PC	sulf zo	a subscription
pła Sta		BBA	Mill		õ	5	Sil	Fee	Wet	8	QZ	Q	0	32	QZ	õ	õ	ô	Su	Fe	Su	3	Q2	Gar	9	S	QZ	Ľ.	Mav	8	Btg		Fes	R a g	Msv	84	Msv	8	Sil	Dist	Msv	Mev	MSN	MAN	02	
Sample Sample Sample Sa					QW	QW	00	80	8	0M	SC	CIN	8	8	8	8	00	00	00	90	00	8	FL.	14	00	80	8	80	oc	dL	RC	Ъ	RC	ВC	QW	CM	QW	BC	M	ON	MN	wŋ	oc	DC	ЦР	111
angla								1 8	0.7						.76	10	4.5	8	.075	~		\$	0.1	9.6	.45	•	0.2	8	0.25		0.2						0.4			1.5	2.2				4	
-					-								5	5	-														9		0						0						d	4		
88	1912	80	S	\$	s	RC	0	Rep	C	50	U	Ð	U	0	C	0	ပ	Rep	å	Rep	σ	Rap	G	Reo	ŝ	0	U	0	C	10	Ø	Ð	G	9	lit RC	X		0		H C	_	9				R.
					#3 adit																			head							N of	Not	N of	N OI	1, #1 ad		1, #1 ad		1. #2 ad	12.00	1, #2 ad	34 ad		1.#3 80		
		NGO	sxico	NCO 0	sxico, #	stoo	reek	ke E o															id Ck	CL D							g Basir	D Bash	g Basir	g Basir	g Basir	g Basir	g Basir	d Bask	o Basir	o Basir	g Basir	GBS	g Basir	d Bask		
(HOIDE		Maid of Mexico	id of Me	Maid of Mexico	Maid of Mexico,	Makt of Mexico	Charlie's Creek	Harvey Lake E of	d Dog	Mat Dog 2	ttie	1140	tie	611	ttie	611	ttie	the second	Fortune	Fortiste	tune	Fortism	E Porterfield Ck	Protectick D head	N Silver	N Sher	N Silver	N Sher	N Silver	N Saver	Groundhog Basin, N of	Groundhog Basin, Not	orindho	Groundhog Basin, Nol	adbnuo	Crounding Basin, #1 add	oupuno	Groundhog Basin	Groundhog Basin, #2 adit	Groundhoo Basin, #2 adit	Groundhog Basin, #2 adit	Groundhog Basin, #4adil	oundho	Groundhog Basin, #3 adit	N Silver	100.22
Sample Location		N.S.	Mai	N.S.	Mai	Ma	Ű	HH	Mai	N/A	Hattie	Hailie	Hattie	Hattle	Hattie	Hatte	Hattie	Hattle	For	FOR	For	For	ш	pro	Z	3 N	N	N	Z			00	อ้	ð	5	6	S	u0	Ğ	NO	ð	WO	อั	Gn	Z	and the second
Samp	2	2366	2389	3390	2620	0575	2638	1295	9570	9702	2635	22	2630	1682	2632	2633	2634	2636	28	20	211	212	142	9004	124	921	126	0000	9587	9568	144	101	102	103	265	2610	66	2638	2611	100	264	99	263	2012	122	STATE STATE
Nap	92	2	35	32	35	35	36	10	38	38	39	g	40	0	40	0Ŧ	40	40	41	1	41	41	42	CP.	43	61	43	43	43	2.4	44	2	45	54	46	40	46	2.8	84	99	48		48		49	and the second

Dd dd												Γ																																	
N N	0	<20	•20	<10	8	<10	R?,	<20	8	<10	<20	<10	01.*	<10	01×	<10		<20	000	<20	000	<20	0755	<20	629	<20	.025	<20	07.5	<20		26	022	59	9	326	9	10		144	926	223	130	<20	8
7	k	2	×	17	61	10	881	2	9	91	31	16	61	17	81	27		33		8		5	963W	21	60	171		2		23		₹.		69		34	•	22	. Y	36		2		14	
F 8	10.05	<0.01	10 01	<.01	10.03	<.01	10.03	0.02	0.02	<.01	10.02	×.01	¥0.>	<,01	10×	<.01		<0.01	0.0	<0.01	100	<0.01	0.0	<0.01	000	<0.01		<0.01	10.0	0.01	00	<0.01	10.02	0.05		0.02	0.01	0.06	0.00	0.08	10.05	<0.01	10.01	<0.01	10.05
al nord	01×	12	2		613		01 >	<10	H		01.4							17	013	<10	0	<10	012	<10	335	<10		12	01.*	<10	9	<10	3	<10		14			0123	13		20		18	
10000	÷		8. <i>90</i>				5 AN C	1 2	2012	1.10	9	5	••	7		41																											X	6	
3000	8	1.28	UN)				126	<20	14		88					And A star	1000	100	120		£	1 55	£1822				1.00		64		200	- 3			222		. A		882	1.13	120	<20		338	135
8		- 48	1990		1114	- 23	8		¥##	1	1 %/~	1.1	1 000				111	- 43	2000		1 200	- 33	1 33		888 B		100			1 3	888	- 33	88 I	- 2.3	882 I.		***		3	13	222			\$	9
88 100		1 38	28	1.1.1.1.1.1		1.12	1.22.2	1.1.1	2.00.2	1.14	1×	\$		<2	Ì	\$		2.6	8200	9	6.8	1.12	<i></i>	1.1.1.1		1.1.1		1.1		1.1	12226	1.1.1		1.1.2	90-70 ·	1.11	2922B	1.11	6 × 0	1.1.1		<u>ا</u> <5		1 167	103
A N		v v	*					1 <1			×	1		1		1					1.8								1.										8 3	1000		1		1 <	*
N	00	1.1.1	2	1 23		1			C		S			1.1	A	1.11	2.2.0	1.11	1.2		S	144	S					1.11	C		.		20005		2002	1.55		1.12	• • • • • • • • • • • • • • • • • • •	1 09		<0.01 ×0.01	X	<0.0	0.0*
M	100	30		870	12	34(3	9	32(96	ě		5(75	22	748	÷.	1140	366	4	Ċ.	4351		5142	1480	629(175		ŝ		521		718		316	813	435		256	31	5087	6836
6W		0.01	0.01	1.65	55	0.06	100	0.01	10 0	0,03	0.26	<.01	10.	0.01	100	0.01	10	0.18	210	0.26	0.38	0.04	0.45	0.7	000	0.44	0.62	0.3		0.25		0.01		0.58	000	1		0,4	101	0.8		0.09	0200	0.44	0.08
E1	•	V		<10		<10	2	<1 <		<10	1.	<10	015	<10	012	<10	012	1	•	2	6	5		1		3		-	÷	59		17 <		2		1			£				0	-	Ŧ
~ 3		0.04	101	0.14	6.22				9 20		w							- 33		1.5	200	1.5	30	0.03		0.04		0.03	0.03	0.4		0.38		0.32		0.17	0.17	0,14		0.31	3.26	0.17		0.08	0.05
- 826999	1 635		1.20	1	844		2000		410		\$222		111	3	1 A A		- 22		1 () ()		1 282			111	844				8 X I		896 B	- 33			800		<i>90</i> 88	1.15	1 223				8333	303	282
	10															1.250								1997												2010		2422					Ĭ	0	0
3	9111)		100		***		200		8.30	1	1.11			1.13	1. X.	18	100		100		£0.5		1 ()			14	120	- 93		- 33	***	19			888 B		F		\$2	- 33	. Ko	3	÷	<2	8
14.8		39,66	8 OF	4.22		> 15.00	121	10.54	23.2	3.86		0.63	33.6	0.84	0.87	1.85	21	6.	0.0	7.38		6,31	ï	17.75	99	8.14	0	8.93	9 H & Z	2.04		4		19.05		24.38	10.00	>15.00	X	21,84	30.6	27.56	1991	13.6	Ĩ.
20	183	10	•	181	2001	35	116	99	M	341	230	291	370	261	CEF	324	6 42	8	619	46		251	20	72	147	100	÷	31	*	168		55	38	41	3	13	87	27	64	16		23	69	60	4.8
CO B	32 165	38,9	37.8		6 8	<.5	÷03	37.8	8.14	9.v	202	1.5	60	<.5 <	ŝ	<.5	8	435.7	144	1437.6		3	-0.2	201.7	83.8	228	• 123	284.8	6.2	0.2		109.7	6 09	391.7	0.001	1040	×100.0	>100.0		714.7	504 7	823.6	100.0	623.9	100
3*		8	0.02	31	20.9	4.75	10		ŧØ.		0.75	5	10 >	5	6	01	948 (0		2			0.03	8						3,18			0.01	22.0	3	6004		< 10 0		11		KØ.				
		-	<5 0		9 9×				0 6		×5 0		÷		1//		10		0 92		8.00	<5 0	£200		Į	3	8 8		6		45 D		<5 0		1 000						6 0		0		0 53
Be mm no	\$2	ľ		<,5 <		<,5 <				×.5		<.5 <			•		0															v					9	<.5 1	£2.5	-			4		
	99		l.		20	10	•	3		10	1.		8		120		0		12	5	33	30	8	9	200	6		5		45		8	10	17	510 I	œ		<10 -	133	18	5	7	10	12	
9:://////			K		()))	58	2	60	53				9				v		M		2 2		5×		228 2		28		67		100	33					202				90	30		80	
	425		100																																							3830			
4		1.22	110	1,33	880	0.09	3.2.5	0.03	0.03	0.18	0.29	0.08	110	0.06	910	0.1	0.11	0.46	22.0	0.51	0.68	0.05	4.82	0.71	1.	0.74	19 0	0.32	0.36	1.25	0.58	0.59	0.96	1,16	1.65	1.82	0.67	0.72	2.2	1,24	0.52	0.45	101	0.95	1.24
		6	0	0	0	8		0	2	5		0		~	6	14											9	17							0			1				-			
p Sem		238	2390	262	665	263	66	857	9702	263	12	263	2031	263	2633	263	26	28	29	211	212	142	090	124	125	126	9999	956	9998	14	101	102	105	265	28	68		261	100	264	86	263	2012		123
1		35	5	35	36	36	6	38	8	98	0	4	40	40	OF	40	9	41		41		42	5	43	E¥	43		43	2	4	48	45	5	46	9	46		48	197	48	89	48	19	49	40

Map Sample	Semple Locition	Sanga	Sample Sample Ture Straff.)	Semple Sen	Sample Description	AUXO *	Ag *	Ca *	* 44	2 U - 2	Ma Ne om bom	Co
40 0584	N Silver	Rep	4.9		Gossan in fault br w/ sulf	33	4.842 *	379	6843	1.84 *	2 8	0
1	N Sher	0		41	Making the list of	88	16.537	904	- 96.11	8 00 *	×1 (10
	N Silver	Rep	1	oc	Sil band w/ suff	4345	11.5	31	778	391	3	3
	NJ Statust	0	0.4	00	Si skest zone wigh	1165 5	517.622	205	. 97.96	3764	1.2	•
	Whistle Pig adit	9		QW	Sil fel dike w/ sulf & mo	10	10.4	520	1200	1900	74 11	4
50 2641	Vrhistie Pro	8	0.2	80	MAD & py thetas in all host	99	1.5	46	9050	280	10 3	\$
	Groundhog Basin Cirque	G		E	Silica rich fg volc w/ blebs of po, cp, sl	34	1.517 *	1896	2047	405	2 7	14
	Grounding Basin Cirque	0		RC	Maw Bull w/ po, st, cp	299	42.1	2277	105	3.12	121	201
	Camp 6 area	υ	4	oc	Fel dike w/ fest sulf clots	<5	25	470	50	148	6	7
	Cu Zone	0		8	SH fest greits with in fractures	10	8.172 *	17115	753	1877	S 64	73
52 131	Gu Zone	s	0.4	RC	Msv cp in sil gneiss	2812	16.065 *	8.08 *	234	6980	3 122	310
	Cu Zonia	8	0.05	RO	d 01 84, 0	111	30.8	3204		2.51 *		28
	Cu Zane	U	0.5	00	Gossan w/ cp	55	19.652 *	2.24 *	1.71 *	2.65 *	<1 63	3 495
	Cu Zone	8		41	Bit contract w/ cp. posi	821	131	1085	69	282	2	8
	Cu Zone	U	0.45	00	Sil contact w/ cp. py	10	19.2	658	1190	12944	10 20	8
	(u.Zota	0	0.7	00	Sil contact w/ py, co	17	14.4	16.41	161	7808	8 8	98
52 8595	Cu Zone	U	0.5	00	Sil contact w/ cp, py	Contraction of	2.094 *	7415	41	906	10 36	39
	E i Ziste	0	02	00	Lens of co & si in greates	4680	16.805 *	1.39 *	225	5613	8 16	166
53 2642	Marsha Peak	Rep	0.4	1P	; \ ¥		>100.0	>10000	600	>10000	10	59
Sans FA	Mareire Peek	Rep	0.5	00	Vuligy, fest, all band in ac & granes	\$	12	270	870	010		
	E Marsha Peak	S	0.3	8	Irregular Vuggy qz vn w/ hnbd, sl, gn	7	6.8	518	3980	7157	6 13	10
	E Marsha Pest	0	0.3	00	N. Best con	17	12.9	655	632	836	12 6	8
	E Marsha Peak	S		00	Gneiss w/ mo	<9	1.2	89	15	72	17 13	2
55 116	Lover Netson Mendak	Rep	0.07	80	Oz suł vn wi si, gn co, py	15	42	624	. 22.0	3.56	10 22	
	Lower Nelson Nunatak	Rep	0.4	۲Ľ	Msv suif boulder w/ sl, gn, cp, po	29	36.8	2358	8.21 *	5.88 *	3 7	49
55 118	Lover Nelson Manalak	Net	1	EL 🛛	. Să mail zone wi el, cp. gn. po & qz benda	409	2002	BNB	4692	1546 *	14 12	62
	Lower Nelson Nunatak	Rep	0.5	FL	Msv cg si w/ cp & po	24	8.426 *	15115	6202	29.95 *	3 4	138
55 9580	Lowsr Noison Number	Rea	6.0	14	Sil greisek metasods wi py stregers	802		24	155	173		8
	Lower Nelson Nunatak	Rep	0.5	FL	Sil gneissic metaseds w/ sl, cp, gn	93	44.9	3451	2245	12.03 *	49 9	62
	Lower Netson Number	Rep	0.2	Η	al w/ minor ca		2,867	14246	213	13.65	*	6
	Lower Nelson Nunatak	Rep	0.4	FL	Sil gneissic metaseds w/ blebs of msv sl,	3 <5	45.4	1393	6.06 *	19,94 *	3 23	41
96 96	Huff Prospect ansa	0		00	Fest at whet sparse po	45 -	0.2	28	28	36	3	
	Huff Prospect area	υ	0.4	oc	Fest qz /gn vn w/ pa & py	2166	228.4 *	309	6.24 *	695	2 4	×1
57 97	Huff Prospect area	9	0.7	00	cals bi zone w/ sui	39	40.1	81	990	945	\$	¥
	Huff Prospect	υ	5.2	8	Qz vn	<5	<0.1	9	19	12	<1 3	V
57 262	Huff Prospect	day	3.6	90	02 M	\$5	0.4	7	18	83		
-	Huff Prospect	9	0.6	RC	Gneissic metaseds w/ bt, qz, po, chl	<5	0.8	88	274	629	9 41	6
58 83	Huff Prospect area	Rep	0.2	00	Granular py lens in marble & calcultures	212	1.3	142	83	2	32 8	8
	Huff Prospect	σ	5	oc		<5	46.7	2688	3.28 *	7.3 *	2 10	-
59 61	Huff Prospect	Rep	1:4	8	May bend of gm, sl, po in martie	45	*5 0	6412	11 18	× 1 X		8
	Huff Prospect	Rep	2.7	00	msv sulf layer in Is and marble	<5	4.6 *	7330	15.71 *	9.1 *	<1 5	2
59 255	Huff Prospect	Kep	7	00	suit in march	\$2	59	6212	20.08	. 99	÷	
	Nelson Glacier, E Skarn	Rep	0.65	FL	Misv gn. sl. py. po w/ gz & całc	71	5.693 *	4700	7.8 *	10.39 *	43 10	13
59 9589	Netson Clacker, @ toe	Rep	0 5	00	py & grey su	359	12	325	624	2401		X
59 9590	Nelson Glacier, @ toe	Rep	0.5	Н	or w/ gn, py, s	35	7.085 *	1273	1.63 *	18708	17 18	14

S
e
0
Ξ.
3
S
e e
2
naissan
5
2.
ğ
5
5
õ
e
s, and reconi
ĕ
ŝ
8
č
e
E
3
8
s, occurrence
-
rospects
ΰ
ð
5
ŏ
E.
-
Ś
ine
n mine
ε
=
Ę.
2
-
S
=
ร
ě.
al results fro
9
0
5
m
č
A.
-
Ð
ā
3
F


Pd L	ndd mi																																													
M		220	×20	<20	075	<10		<20	*20	<10	420	<20	88	<20	*20	<20	00	<20	8	<10	01×																						108			
4	<u>.</u>						88		W)		LX.	7									M							1.1		1.3	888 B	1	888		***		988 B								822	
		10'Ns	×0.01	<0.01	0.04	<,01	Ż	<0.01	0.02	<,01	0.0	<0.01	20	<0.01		0.01	¥0 0¥	0.02	ž	<.01																							10.02			
•		212	~10	\$ <10	8	and the second second		1 <10	- 10		012	c 10		<10	0	5 <10	0100	s <10	0																								91			
5		3	399		1. Mail 1990	1.18	8 000	1.33	KW 8		Ł	- 12	8200 B	100	1000	- 43	Kase i	133	6 000	1.0	8000 B	- 28	6386	1 8	200 I.		888			- 19					200		333					- 83	59 - 23		888	
		c,	8	<5 <2	9	2		5		4	6 4	<5 283		7 120		<5 3		9		3																							37 DS			
100	-X	1	***	- 33	.	- 33	8 888		1000	1 33		<5	828		887	- 63	(386)	1.49	8 38	- 63	¥880	- 33				- 23	***			1.43			88 B			- 33			K	- 43		- 22			828 (
a												20											6924	17 A		1.155	1000	1.11	E 26 /	2.4	68.66 B	- 264	380 A B		222	1.13	2286	- 22	VX8 1	- 33	1.11	1.155		1 33	22000	
111		10.0	10.01	0.01	100	<,01	ā	0.01	100	0.07	00	\$0.01	0.01	<0.01	1000	0.03	10.02	c0.01		×.01	6	0.01	1010	0.02	2020	:0.01		<0.01		0.01	0.0	±0.01	300	0.01	0.0	0.05		0.09	10.0	0.01	8	:0.01	10.08	0.01	10.0	0.01
4																																														
by.	8	į		199		1000																		100				10.05							8								M			
																																											0 I.×			
		ž						1	888				882	- 3			***									- 23	888 B	- 3		13			× 1				888	1.33	888	- 33		3	0.00	1.23	886	
Ŧ	112	0 11	00X01	- 667	10000	1.1	8000X	1.1	s 200.		• X X X	0.023 0	22000	1.111	CO. 10	1.10	6000G	1.10	5 0000	1.00	9.XXX	1.11	6 W. (1000 I	1 90	× 600	25	1 K K K	- 235	10000		\$2000		120.03	1.12	1000	1.133	2000	1.00	2 0000	- SS	1.000	68 0	0 80	01 0
		1.0						1	W				88	1000	28																								Ŵ.	1995				0.0	0.0	°,
8		ł		100					88			- 22						100						1944														1993								
		13.44		2,68		193		13	888		8.8	17.4		21.9		5.21					200		8000		2222	1.5		T		5,96		13.06		8.6	X	0.17		3.74		39.83		34,35	26.10	19.5	2.12	6.61
a l		101	2	127	13	11	382	1.1.1	20000	1 201	601		121	31	011	140		287		- 66	2.40	54.5 270	250	236		37	99	64	195	140		44	101	127	9	43		124	8	37	F	5	81	137	142	209
S		144.0	1.001	6.7	6.22	10.5		6.9	923	\$`V		63.4	9.946	120.3		84.2	6	7.8	ą	>100,0	E	54.5	2.0	<0.2	0122	374.4		2000	•	1039.4	11960.1	1243.2	2.0	2	S	<0.2	2.02	5.5		488,9	10	525.9	1000	841.2		126
3		0.03	0.09	0.89	10 0	0,15	10.0	0.04	8 0	0.03	82.0	0.21	10.0	0.68	0	2.35		0.42	996	0.51	10.5	1.83	Đ	0.05		0.69	1.69	0.09	1.00		3.66		COOO/	0,1	A 13	0.05	010	0.86	8	0,1	8	0.02	82.2	0.66	1.0	0.2
	ž.	8	22		52	- 2	R	13	88		922	529	100		1823		6 333				8		Ŷ	9	22	<5	60 M B		20000		42	1 3				1.14	9		-		-		122		2	<5
98	BAREAN HARA					\$°2	90			1.5				and the second						1.1	9000X																									
84		41	*	11	01	14	2	26	8	20	18	12	82		90	14		1	938	- 9		115	æ	1.1	*			8	R	4	8	13	91	35	3	64	¢	44	•	v	Ŧ	4	15		•	23
W		2	123	011		8	10000	868	•	14	69	171	10000	1195		\$2		57	322	34	20	22	H	13	10	62	643	19	0.00	173		13		2440		\$	8	\$	20	11	9	9	5.	2837	202	20
		1.38	996	1.6	0.15		0.66 ~	3		1.41	593		922		k		88	1.62	82.1	2.78	8	2.07	901	3.74	53	0.43	0.05	0.66	£8 k	0.9	1 4 5	1.68		0.26		0.17	81.0	1,78	3.20	3,69	0 18	0.14	1+0	0.26	0.13	0.62
#																																														
		9584	9999	120	121	2640	1442	127	128	2637	130	131	132	133	05.02	9583	1050	9696	0000	2642	2643	134	136	1896	911	117	118	118	0990	95.81	9582	9583	58	96	67	261	202	92		08	10	264	266	129	9999	9590
		48	9	50	9	50	8	51	9	52	25	52		52	23	52	23	52		53	125	54	3	2	3	55		55	58	55	53	55	8	25	23	57	10	58	118	59		20	20	59	85	59


N Co	34 22	4 <1	11 11	38 29	26 59	11 3	23 23	21 52	21 2	18 19	14 28	21 2	10 <1	20 22	12 3	15 <1	1 * 1	17 1	16 5	7 <1	14 11	13 6	12	8	8 ×1	7 1	1× 8	2 5	6	7 7	•	4 <1	8	16 5	8 8	16 6		9 <1	1> CI	8 2	<u> </u>	3 26	22	8 44	*
Mo DOM DE	e	<1	8	<1	10	12	30	0.05	980	0.13	50	4	~	-	••	2	-	3		3	2	e	•	8	e t	5	2	<1	~	1	2	<.01	0.05	<1 >		. 1>	62	20	30	0.23	0.13	4	98	6	
* uZ * uZ	496	60	261	34	621	2057	9577	7.9	4.32	6,6	>10000	2	2	127	22	9	C4	9	18	16	8	174	86	204	8	27	8	68	99	65	4	0.02	0.02	72	82	71	. 96	4.9 *	8982	1,4	2.36	4 *	37 *	>10000	112
* Fb	169	60	354	25	236	2075	2.7	4.64	• 33	10.5	>10000	8	23	63	57	23	ç	\$	•	11	9	265	632	2660	11	13		253	361	22	346	0.01	10.0	8	11	8	1736	3213	808	0.06	0.18	1960	2850	3000	28
 Ci bolt 3 	162	17	96	100	36	442	939 .	3.97	7 08	4.73	999	19	8	122		ŝ	23	14	99	7	*	10	23	0	•	15	9	23	8	9	9	0.01	0.02	8	10	8	6463	1618	2600	0.33	0.27	1215	3629	870	30
AG AG	1	0.2	90	< 0.1	1	11.8	4 387	0.001	000	0.001	25	<0.1	+0.1	0.2	90	<0.1	+01	<0.1	*0.1	0.2	<0.1	6.5	18	58	6.0	0.1	20.6	5.9	11	0.4	8	0.001	0.001	<0.1	40 I	<0.1	121	7.8	6.6	0.004	0.002	14.8	22.1	16.7	¥0.1
Au30 aob 00	\$Y	<5	\$3	<5	9×	Ø	3	<5	53×	<5	- 10	<5	Ŷ	6>	ç	<5	9	<5	y <5	\$2	\$¥	35	181	532	9	<5	823	30	69	6>	64	\$≥	92	6>	\$	6×	1204	260	728	835	295	89	103	180	\$2
		vily fest marble		fg dissem po	sult	n, cp, sl	diene zone	in sil volc			an & av			granite float					et un wil limonite, p			adj to gz vn	sparse gn					n w/ py & gn	contect w/ dike	ph float				slate	siste	slate	*	Y		ate & silica		si & py		cb	
anolia Dascribitica	arbie widesem sud	egular qz vn in hea	tel martic er suf	Alt intermediate int w	z bi zone wi gnelss	uggy qz vn w/ py, g	sy suff in viggy ga	ies of sl, gn, py	a th sil voic	il meta host w/ gn, si	z vn wi biebs of Bi	Irregular qz vn	z vn w/ nd	am in slate &		est gz vn	2 Mi	z Vn	z , cal, sericita lens in un w/ lim	Z VN	success of approach	like w/ py & gn	z & fei ture wi py &	z vn w/ sulf	5 MJ	est gz vn	2 201	ulf rich band in gz v	z vm wri py & gn @ contact	ream in grenite porph	U.S.	z vn w/ sparse py	n siste wi py	ream in black gray	ream in black gray slate	tream in black gray slate	i cuit band we el S p	4 sulf band w/ sl & p	ęł,	msv sulf w/ carbonate	SV BLAE		set all sulf band	I msv sulf w/ sl, py, cp	de
Sampla S Sta	OC N			OC A		1.11	OC N				O H		00 00		000		00	1			00 14									1000	00 00	oc oc		S	\$		UNV B	1		10. A.		OC FI			
elone Sample Siza (8.)			4		910	0.5	52	1	8		910		0.7		6 X		ł		0.5	1.5	10				5				0.3		£	1.3					6.5	5	55	5	8	0.8	1	0,4	0.3
Samp Tvin	Rep	Rep	Rep		60 C		o R	s	Rep			Rep	0	\$\$	de a	Rep	0	SC	0	U	RC	Rep	Rep	Rep	30	Rep	ВC	s	8	SS	ß	Rap	8	SS	88	SS	0	U	0	C	80	c	c	G	9
Location	Huff Prospect area	Huff Prospect area	Huff Prospect area	Huff Prospect area	Neison Glacer SYV side	W Ridge, Nelson Glacier	W Retga, Nelson Glacke	Glacier Basin	Gincler Baski	Lake Prospect, #2 adit		Elephant Nose, E of		Elephant Nose, E of	Elechant Note, E of	Elephant Nose, E of	Electrant Mose, E of	Elephant Nose, E of	Elephant Nose, E of	Elephant Nose	Elephant Nose	Exchange	Exchange	Exchange, adit	Exchange, adil	Exchange, adit	Exclance, adl	Exchange	Extense	Exchange	Exchange	Wedge Point	Wedge Point	Sunrise 1&2	Surtee 182	Sunrise 1&2	Frenchie, adit	Frenchie, adit	Frenchie, adit	Frenchie, adit	Frenchie, adit	Hydro Pit	Hydro Pit	Hydra Pit	Zarembo is Fuorite
4	60 256		61 255		63 143		63 \$603		64 2609		66 2544	67 5	67 6	67 7	67 203	68 1	68 2	68 3	68 4	201	202		6		69 11		206	12	69 13	14	205		69 2619	63	70 64	65	17		71 207	71 2616	71 2517	-	72 16		73 19

28																	Γ																6> 6>	ex o	6> 6>									
Factor and a second second	1		1.2	075	12	100		10	<10	615	1.050	Sec. 6.		6 <i>6</i> 00	<20	629		81.11	1 3	\$28%	1 1 1		<20	<20	1.0	022	<20	1.11		025	<10	****		ŝ	- 13		1.11	2.886	<10	92	<20	022	<10	8
	1	8				10				6					1						1 23		21		2			0			4				59		9		10		32		34	
1000000000		888	- 3	10.02		0.0)) V	0.0	0.0	10 2	0.0×	10:02	0.1	0.0+	0.0× 1	0.05 015	0.0× 1	0.0*	<0.0>		<0.01			0		ŝ	<0.01			1010	0.01		0.14		0.12	0.02	<0.0>		<.01	3	0,02	0.02	<.01	0.0
\$7000 98 000	35		- 243	0) - XI	1.25	31 × 10	4		3		4 <10	6 ~ 10	7 <10	822			1.5	75 ×10	1.15	01~ 6		0	- 46	000000			8 <10		7 <10		1		2 <10		3 <10		9 <10		8		16 <10		5	4
		**				20 172		32	12			<20 16	3				100			6%	<20 551	1///			20 133	8	<20 31		1.33		2		20 12		20 4				1		20 1		-	
	- 33		- 52						3	÷.	13				13	200	- X			£22/	7 <			ģ	1.35	688	<5 <		3		<1								<1		<5 <		×1	
	2 <u>0</u>		<5	£ ¥	<5	91	9	140	64	91	<5 <5	-	<5		<5×	9	<5	12	<5	\$	\$5	¢	<5		<5	822	3			88			<5		<5	3	7	Ð	12		<5		<2	5
	- 23		<1		1	•			A SACTORNAL			14	2	1.				7	<1		1	Ŧ	*1	Ŧ	<1	×	<1		2				7		4		5				<1			2
2 × 8	0.04	0.22	0.08	10.02	<0.01	10.0*	0.74	0.07	< 01	10 *	0.01	<0.01	0.11	1010	<0.01	0.01	0.02	0.04	<0.01	<0.01	0.04	0.05	0.04	ē	0.05	10.0	0.06		0.03	100	0.12	0.08	0.16		0.03	0.05	<0.01	20.0	<.01		<0.01	00	<,01	0.12
AM TOU	152	914	198		416	11.74.5	2670	950	4440	245	93	10	1542	921	70	ž	100	910	41	8	947	999	1364	ï	460	83	952	842	1460		175		614		547		06	818	225	:: ;;;;	876		805	64
₹×¢	0.2		0.57		0.3		0.48	207	0,81	901	70'C	101	1.25	97.0	0.01	101	0.04	. 1 .	0.01	101	1.22	2.0	1.43	202	0,19	80	0,48		0,5		0.05		0.73		0.83		0.14	110	0.21	22	0.12	690	0.04	20
					1	2				0					1	÷	5		<1 <		3		8	÷	5		5		9		<10 (11 (7 (<1		<10		<1 (<10 (36
7 2 20 0	0.14	10.0	0,05	0.16	0.11	0.00	1.42	0.01	0,13	000	0.01	10.0	0.35	1010	0.01	10 0	0.05	20.0	0.01	10.0	0.25		0.13	ē	0.11	0.01	0.24	0.06	0.18		0.21		0.27		0.15	10.0	0.05	12.40	0.14	0.18	0.04	0.02	<.01	0.22
	- 33	8883	- 23	200 A		22	1.32	2000	3	1886															0.13										10	1.11	- 33	1000	- 33			0.069	0.06	100
					0.803				1000				100				10.42				<2 0				<u>^2</u>		and a second	÷2	2000		:10			3					atta:		201000		0	
	3		1	¥ 96 K			14	03 ~1	38 <1	012 83					46 <		58 <		31 <		28 <		76 <		> 90		28 <		> 26		74 <1		46 <		43 <	10	8.08 <		1.1 <1	01 - 00	10 <	9	06 <1	
					1.000				9 6	×.	199	Ø.	C.No.5		4 0.	2	0		3.0.		7 3,		9 3		2 1.	0	3.		5	0	3 0.		3 2.		8 2,		1000		3 14				5 11,	
March 100000	- 93	22220		6. OK	100	9 97		0 24	1.1	02 00	1 N	2 303	1. 2.	2 101				12.0		2.81		871 8	.2 96	9 6 .	<0.2 242			4 208	.2 15	105 XX	滚	822 B	1	8002	- 22	1892		2000	- 33	2000 I	1.13		- 34	
	-						~	001*	>100	\$100.0	° ₽	×0.2		2 0		2		łø		IX.						18		IØ.							1			*			130.6		A.	Ċ
Kara Kara		8		60				0.40	3.24	0.02	0.22	0.13	0.79		0.14	0.0	0,25	1.06	0.03	10 O×	3.05	2.05	4.07	0.25	1.3	0.0	3.78			10.0				662		0.87		68	0,88	0.20	1.05	00	1.09	0.79
18 C 12	<5	9	<5	\$2	<u>5</u> >	2		91 10		2	1.00	9	\$	9	\$>	2	\$5	9	<5	\$	10	28	12	49	<5	10	G	†1	\$5				\$>	\$	<5	8	9≻	9						7
Ba Ba Prim Port P	8		7		4			0 7.5	4	8 × 9			1		3		0		7		5		4	0	4	0	2		6			0 × 0	9		Ş		40			20 × 5			0 0.5	
	1.1	8 9	5 87		1		4 30	£ 1	1.1			45 34		**		\$		12		H.	5 55	K		12	<5 54	L.		40 17		31 8	1	3 160	-	5 123		1 3						10 -		
						1968				Ĭ																												290		1010				
4 3 9	0.37		0,59	0.80	0.49	0.2	3.08	0.56	2.12	0.27	0.1	0.02	2,42	0	0.04	0.02	0.15	10	0.02	0.02	0.38	0.23	0.49	0.01	0.19	0.00	0.46	0.14	1.07	0.03	0.41	1.8	1.79	1.8	1.62	0.12	0,35	0.63	0.39	0.81	0.3	2.08	0.21	0.85
Sampe No 236	7		6		02	8	08		13	3									-						4						18	19							16	17			25	
	14	m		143				W		2344		9		8	-		3		20	202	8	6	10	11	204	206		13				3 2619			[×]	11	18	202	1 26	2617	2 15	81 S	26	10
223	61	8	6	6	8	0	6	3	65	18	6	0	6	6	18	199	16		89	6	8	1	69		8	8	6	180	100	8	8	166	12	R	12	120	F	18	1		12		1	

op person Locan. o No	L.M. Martines	advi	e e e e e e e e e e e e e e e e e e e	ats.		Ho add	pom opt	bom k	bon %	1 No Undo	mag mag	HOOL 1
3 20	Zarembo Is Fluorite	0	0.3	oc	12	<5	<0,1	12	23	113	2 11	10000
3 21	Zarenho la Fluorita	O	1.0	RO	Fluorite on to tasset	201	0.6	8	14	69	2 3	
3 22	Zarembo Is Fluorite	v	3	oc	Sil gray-green banded volc	<5	<0.1	4	12	36	1 10	
53 53	Zarenbois Fhorne	Rep	10	00	Basalt	45	+0+	40	9	113	3 51	Š
3 208	Zarembo Is Fluorite	G		RC	Geodes	<5	0.1	89	19	44	1 6	
3 209	Zarento is Fluchte	0		EC.	Geodes	9	40.1	10	16	85	21 2	
74 84	Zarembo Is Fluorite	SS			Di & metaseds float	<5	0.2	26	25	108	3 48	4
200	Ctoridian Prospect	RG		FL	Q2 di boutter	\$	×0.1	9	36	- 20	×1	
1	Salamander Ck, pit	U	0.3	RC	Sil metaseds w/ po & cp	<5	0.6	227	9	41	4 23	-
75 77	Salamander Ck. pft	Ð	0.3	KC	fest all metased w/po, bt, mutcovite	¢9	04	P4	9	25	99 9	
	Salamander Ck, pit	G	0.5	RC	Sil fest sc w/ bt, muscovite	\$	0.3	60	7	82		
- 78	Salameter Ch. pf	9	20	RC	Sil fest so w/ bl. miscovita, po	9	0.2		7	129	5 39	
5 80	Salamander Ck, pit	G	0.7	RC	Fest contact zone w/ gamet, bt, muscovite	s <5	<0.1	36.	7	29		
243	Salamander (X, pli	8		dL	Gamementas mica ac	Ş	03	19	6	62	128	
5 244	Salamander Ck, pit	Rep	14	цр	Granite	<5	<0.1	14	7	104		
912 9	Selamander Ch. pft	Rep	+ 0	RO	Oz Mihi miza so	ç	20	66	9	74	100	
6 81	Salamander Ck, E of	U	0.6	RC	Garnet so w/ gz lens & sulf	9	<0.1	38	3	73	1.1	1
82	Salamander Ck. E of	0	0.8	D2	Fast presary all by ac	\$5	1.0*	2+	9	99	1 28	Ĩ
74	Rd 6265 borrow pit	9	0.4	RC	Qz vn w/ muscovite	<5 <	<0.1	27	5	39		
34	Rd 8255 borow pil	5	6.6	NC N	Ar withands of 42 & po	2	0.3	22	7	118		
242	Rd 6265 borrow pit	g		ΤP	Qz vn w/ po in mica sc	<5	0.2	52	6	56	<1 50	
83	Rd 50050 borrow pit	0		2	Feet metereds wil dissemipo	2	0.3	82	10	50	(XX)	
8 246	Rd 5050 borrow pit	Rep	0.5	RC	Alt volc w/ fg dissem po	<5	<0.1	71	11	43		11
101	Arron Ck	8				\$\$	0.2	69	10	66	2	
9 241	Bear Ck	RC		FL	eg co	<5 <	<0.1	14	20	41		v
2010	N Bredheld River Sham	Len.	8	8	Mag & herunite band	3600	911	1130	6	160		
80 2646	N Brødfield River Skarn	c	0.8	90	Fest gz lens w/ mag	1360	3.4	2200	27	95		11
90	N Bredfield River	88			() Canti	\$7	101	13	8	65	4	
71	N Bradfield River	SS			Sand w/ mag @ tidal zone	<5	<0.1	19	6	37		-
236	Brafield Canal, head of	8			Black sends	9	1.02	10		60		
239	Bradfield Canal, head of	SS			Black sands	<5×	<0.1	17	9	32		1
68	Bradield Canal, head of	55			Taken in muditat 🏩 tidal zone	\$	+01	15	9	36	•	
69	Bradfield Canal, head of	SS			Sand w/ mag @ tidal zone	<5	<0.1	17	7	33		^o
238	Brefield Canal head of	83			Must from tidal fist	9	<01	10	9	35	×1 5	
237	Brafield Canal, head of	SS			Mud from tidal flat	<5	<0.1	11	7	52		
99	Bradfield Canal, head of	88				\$	40.1	10	0	74	01 1	
100	Bradfield Canal, head of	SS			Taken in mudflat @ tidal zone	<5	0.1	25	8	74		12
04 234	Bradheld Canal, head of	83			Must from trial fat	\$ \$	10	24	9	69	*1 B	8
235	Brafield Canal, head of	SS	34.14		Mud from tidal flat	<5	0.1	25	8	70		11
	LANK FOUN, VV OF		07.0	3	PREN 42 MI 44 MI 00 DO	2	Env	2	A	11	•	
240	Duck Point prospect	Can	0.83									

PA Pa	Area Maria		11. 11. 12. 10. 10.						ARC SA ASS																																
d unde i																																								0.5	
li pien	- 33		- 33	889 I		×44			13	ĸæ	- 33			88 C	- 63	***	- 33					888						100		202	- 0.3					13.	18	222			
8	•	2.700	×	8322	1.13	Sa 🗠	1.12	(200)		6 -934	1.133	977 (6.XXI	- 56	19923	1.11	1.200 I	61	2000	1 3		- 33	6992 I	1.55	2222	1.3	1.10		(A) (A)	- 23	(A. 17)	- 39	1.10	1.12	1999	1.13	12.27	8	×10 0.03	
																																								÷.	
Bri Dom p	<20	420	<20	0.7	<20	022	<20	023	<20	074	<20	20	<20	02	<20		<20	000	<20	075	<20	079	<20		<20			000	<20	000	<20	074	<20	620	<20	2	<20	8	<20	03	<20
30 Dom	1.11		1.12			200 S I	1.1	20000	1. 113	600 C	- 542				- 23	2002	1.02	2000	1.12	6.021	1.11	6 A S S	- 00	*****	- 604		1. 333	57X-61	1.199	62 KO 1	1.1	600X	1.11	1.19	1.33	\$3355	3.96	2222	100		
os d Us d	2.23	60000	1.11	200.00	1.52	22223	1.55		1.24	1.585	1.11	20000	1.12	22.28	1.12	2200	1 1 1 1	20000	1912	00000		600X-0	1.10			00000	1.11	202224		CO0001	100	0,000	1.00	ec.co.	1.006	S2000.		00001		9 7	
N SQ N SQ	1993												- 68																		100	20			1956						
1777 (A. 1997)						938					13	80	1		- 33	* **	1.68	882			- 11					222	- 33	8226							- 33	880		333 A		0.41	
	36-60 S																										All and a								10000						
ta Mg Pn N																																									
k l						***	1	222	- 23			****		988 B	- 33	***		888		***		882			- 33				- 33	382				800		82			1		
3000000				× 1	- 83	****	- 22		8						19						- 33								- 33		- 43		3	822		882	13			8881	
04 04							1000		1990S		100		10101						1993														1949.0				10000				
e Ca	- 33				- 23						1000																	12				82		1000		100			1		
E.				***		11		.		22		18 A 1			100			822								\$ 8	1	82	33	***			4333	02		12	100	8		90	
i Cr																														900		880		120		889	- 22	1332 I		69	
С							1111		100												100						. And						1.1.1							29	
	<5		<5>	1	<5	24	<5>		\$°	\$	<5	-	\$ 2	9	<5	2	<5×	2	<5	9.	<5>	2	<u></u> 22	92		e		\$ 2	<5>		\$5	9	\$	9 ×	<5×	Ŷ	<5	G .	<5	0	<5
			8		4		05		4		8		8	9	1		4		2		8	8	4	9		9× 0		6	3			e	8		9		-		2		9
As B ppm ppr	1.112																																							45 69	
	Ac.8.28		and the second																																						
N N	0.69	3.2	0.76	0	0.55	0	2.5	0.0	2.57	1 66	1.84	2.5;	1,91	3.6	2.69	3 0	2.74	1.1	1.22	Ì	1,97	č	3.59		0.42	0.6	1.28	0.3	0.82	10	0.65	20	0.65	0.76	0.35	1.50	1.57		1.46	0.36	0.24
-	0		2		08	8	4	99	9		8	0	0	2	44		11		4	5	142		346		41	648	646	0	1		39	9	8	36	37	0	17	H	35	72	240
Nep No	14	23			73 2		74 5		75 7	76	75		75 8		75		76 8	76	77		77	78	78 2	19	79	8	80	91	81	8	81	B2	28 6	82	82	63	83 6	14	84	86	85

Bear Ck	Arron Ck	N Bradfield River Ska	Bradfield Canal, head	N Bradfield River	Bradfield Canal, heat	Bradfield Canal, hear	Bradfield Canal, hear	Duck Point, W of	Duck Point prospect	
79	64	80	81	81	82	83	84	85	85	

N Silver Groundhog Basin, N of Groundhog Basin, #1 adit Groundhog Basin, #1 adit Groundhog Basin, #4 adit Groundhog Basin, #3 adit Groundhog Basin, #2 adit Groundhog Basin, #2 adit Groundhog Basin, #2 adit N Silver N Silver Silve
--

24 Castle River Nof	25 Castle River area	26 Castle I. Barite	27 Castle I. Barite. E side	27 Castle I. Barite	-	28 Castle I. Barite, SW en		-	31 Lost Lake	32 Harvey Lake trail					34 Harvey Lake	Ĩ	35 Maid of Mexico	36 Charlie's Creek	37 Harvey Lake, E of	38 Mad Dog 2	39 Hattie	40 Hattie	41 Fortune	42 E Porterfield Ck	42 Porterfield Ck, @ head	
Pinta Point	Pinta Point	Keku Islet	Kuiu Lead Zinc	Hungerford, at beach	Security Cove. W of	Kuiu L., 3305 ft peak	Northern Copper	Saft Chuck area	Towers Ck. @ falls	Towers Ck	Towers Ck	Saft Chuck area	Portage Ck	Portage Ck	Coonrod Zinc	Salt Chuck	North Arm	Towers Arm	Towers Arm	Taylor Ck	Taylor Ck, @ hill	Taylor Ck, @ pit	Taylor Ck	North Arm	Indian Point	
-	N	3	4	5	9	2	8	ch.	9	10	11	12	13	4	12	16	17	30	19	30	20	21	5	52	3	

study area Stik 2 Figure 3. - 1996-97 sample

BLM LIBRARY BLDG 50, ST-150A DENVER FEDERAL CENTER P.O. BOX 25047 DENVER, COLORADO 80225

